共查询到19条相似文献,搜索用时 78 毫秒
1.
滚动轴承是很多大型旋转机械的核心部件,其故障诊断的研究对保障旋转机械运行稳定性具有重要的意义。经验模态分解方法对分析非线性不稳定的滚动轴承故障信号具有独到的优势。然而,经验模态分解固有的端点效应问题往往会导致较大的故障特征提取误差,影响故障诊断的准确性。针对上述问题,本文提出基于无失真端点极值化的经验模态分解(UEE-EMD)的滚动轴承故障诊断方法,UEE-EMD通过交叉取样策略和端点极值化策略从源头上抑制端点效应的产生,利用本征模函数截头去尾从结果上屏蔽端点效应,保证了滚动轴承故障特征提取的准确性。故障诊断仿真实验表明,基于UEE-EMD的滚动轴承故障诊断取得了更好的诊断效果。 相似文献
2.
为有效提取非平稳特性的滚动轴承振动信号特征,提高故障诊断效率,提出一种采用集合经验模态分解(empiricalmode?decomposition,EEMD)、Hilbert变换的特征提取方法,并利用烟花算法优化支持向量机(support vector machine,SVM)分类参数的滚动轴承故障诊断方法. 通过EEMD方法将目标信号分解成若干个模态函数,采取Hilbert变换获取模态函数的瞬时频率,并对模态函数及其瞬时频率进行统计特征提取,从而实现特征的有效降维. 结果表明:信号经过EEMD-Hilbert处理后特征能有效提取,将训练集和测试集各600组数据代入烟花算法优化SVM模型得到测试集正确率为99.63%;比传统的遗传算法和粒子群算法优化模型分别提高0.4%和0.2%左右;同时收敛时间更短,验证了该算法模型的可行性与有效性. 相似文献
3.
乔国鼎 《国防交通工程与技术》2019,17(6)
滚动轴承在机械装置中非常重要,其运行状态与整台机械设备的工作状态有直接的关系,但在早期弱故障检测时,特征信号经常被淹没在噪声中。为了提高该故障特征的识别精度,提出了基于互相关奇异值分解的故障诊断方法。首先利用奇异值分解将轴承故障信号分解为多个分量信号;其次使用峭度值作为衡量标准,选择两个合适的奇异值分量用于互相关包络分析以获得包络谱;最后通过信号的频谱分析,得到轴承的故障频率,从而完成早期微弱故障检测。通过仿真信号和滚动轴承内圈故障实测数据仿真对比,验证了该方法的有效性。 相似文献
4.
针对滚动轴承故障状态难以准确且快速的识别,提出了一种基于改进自适应噪声完备集成经验模态分解(Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise, ICEEMDAN)-多尺度排列熵(Multi-Scale Permutation Entropy, MPE)和灰狼算法优化支持向量机(Grey Wolf Optimization Algorithm-Support Vector Machine, GWO-SVM)结合的故障诊断方法。首先将轴承信号进行ICEEMDAN分解,然后选取其中相关性较大的IMF(Intrinsic Mode Function)分量计算多尺度排列熵构成特征集合,最后通过GWO-SVM算法进行故障状态识别。通过滚动轴承数据集和不同算法的对比实验,验证了ICEEMDAN-MPE-GWO-SVM方法的有效性,表明该方法可以准确且快速的诊断滚动轴承的故障情况。 相似文献
5.
为了对主减速器的耦合故障进行识别,通过对振动信号经过集成经验模态分解(ensemble empirical mode decomposition, EEMD)所获得的高频分量采用自适应阈值降噪和对低频分量采用区间阈值降噪,有效去除了信号噪声,创建了配对多标签分类策略(paired multi-label classification,PMLC).基于PMLC和稀疏贝叶斯极限学习机(sparse Bayesian extreme learning machine, SBELM)用单故障样本构造概率分类器集,再采用网格搜索方法生成最优决策阈值,将分类器集的概率输出转换为耦合故障模式,提出了基于自适应区间阈值降噪和SBELM的耦合故障诊断方法,并用主减速器的实际样本集验证了该方法的性能.研究结果表明:该方法的诊断精确度达到96.1%,比基于PNN(probability neural networks)和SVM(support vector machine)的诊断方法提高了5%;该方法的训练时间和执行时间为131.4和61.3 ms,比基于SVM的诊断方法减少了70%. 相似文献
6.
【目的】针对滚动轴承微弱故障难以识别的问题,提出了一种基于MR-DCA的滚动轴承故障诊断方法。【方法】利用最大相关峭度解卷积以及共振稀疏分解的方法对输入样本进行预处理,可以有效地滤除原信号中的噪声,突出故障冲击成分。将所获得的故障分量的二维时频图以及原始信号作为网络的训练样本,经两个特征学习模块后,使用注意力机制对输入特征进行筛选,通过权值重分配可以有效地提高模型计算效率和识别精度。为了验证模型性能,使用某大学的滚动轴承微弱故障数据进行故障诊断分析,同时开展消融实验,对诊断模型各个模块的有效性进行验证。【结果】结果表明,所提出的方法识别准确率更高,且具有更快的训练速度和迭代速度。【结论】所提模型在进行滚动轴承微弱故障诊断时可以实现良好的诊断性能。 相似文献
7.
为了解决高速列车轴承早期故障中低频信号的类间分离性较弱、保持架故障难以识别等的问题,提出了基于Teager能量算子(Teager energy operator,TEO)聚合经验模态分解(ensemble empirical mode decomposition,EEMD)熵的自适应诊断方法.该方法将EEMD、样本熵、TEO相结合,利用EEMD的自适应性得到固有模态(intrinic mode function,IMF)信号,用改进的TEO从IMF中提取得到样本熵,使用支持向量机(support vector machine,SVM)判断轴承工作状态与故障类型;讨论了EEMD能量熵、EEMD奇异值熵、EEMD-TEO时频熵生成的故障特征向量以及该向量在SVM中识别结果;对正常轴承、保持架故障、滚动体故障3种状态的轴承样本数据进行了故障诊断.研究结果表明:对3种轴承的故障识别率可以达到98%,较传统的经验模态熵识别率提高了2.6%,该方法可用作高速列车轴承状态诊断. 相似文献
8.
基于EMD和Wigner分布的轴承故障诊断研究 总被引:3,自引:0,他引:3
将经验模态分解和Wigner—Ville分布应用于轴承故障诊断的研究。首先将故障信号分解成一系列固有模态函数,再对分解后的固有模态函数进行Wigner—Ville分布分析,可有效抑制频率干扰现象,使时频分布图更加清晰,仿真信号和轴承故障实验信号的研究结果表明:基于经验模态分解和Wigner—Ville分布的分析方法,能有效地诊断轴承的故障。 相似文献
9.
采用Shepard方法生成包络线,得到了一种新的EMD算法.引入了Shepard方法及性质,从数学角度解释了选择该算法的原因,最后针对噪声信号给出了仿真结果,表明了该算法的有效性. 相似文献
10.
采用Shepard方法生成包络线,得到了一种新的EMD算法.引入了Shepard方法及性质,从数学角度解释了选择该算法的原因,最后针对噪声信号给出了仿真结果,表明了该算法的有效性. 相似文献
11.
12.
在介绍滚动轴承的故障机理的前提下,采用振动信号分析法对滚动轴承状态监测和故障诊断进行研究。通过LabVIEW编程,应用EMD分解和共振解调相结合的方法,对振动信号进行分析,获取有用故障特征,进而确定故障类型。 相似文献
13.
复杂结构设备的滚动轴承其振动信号成分复杂,故障信号微弱,信噪比很小,常规诊断方法难以有效消除背景噪声,有效提取故障信息.文中研究了基于相位补偿时域同步平均的滚动轴承故障诊断方法,并根据轴承故障信号存在调制的特点,探讨了同步周期的合理选取.通过对轴承内圈故障的仿真研究,验证了相位补偿时域同步平均方法的有效性,它能够同时提取故障特征频率与调制频率,为精确诊断轴承故障提供了新的途径.经进一步实验研究,证明该方法是有效的. 相似文献
14.
15.
针对目前奈奎斯特采样方式对信号进行采集所产生的数据量较大的问题,提出一种基于压缩感知并结合神经网络的滚动轴承故障信号检测方法,通过K-奇异值分解算法构造冗余字典,利用神经网络以映射后观测矩阵的前一部分值预测全部观测值,实现信号的二次压缩,最终利用子空间追踪算法基于预测出的观测矩阵对信号进行重构,通过重构信号频谱可获得轴... 相似文献
16.
经验模式分解法(EMD)在滚动轴承故障诊断中的应用 总被引:3,自引:0,他引:3
在非平稳过程中,由于机械设备所受的应力比平稳过程中所受的应力更为复杂.因此,对设备的非平稳过程进行监测有利于发现早期故障,避免故障发展导致的严重破坏,本文将EMD(Emirical Mode Decomposition)法应用于机械故障诊断当中.由于EMD法具有自适应的特性,适宜于非平稳信号的分解,该方法应用于滚动轴承的故障振动信号分析中,结果表明谊方法能够突出滚动轴承故障振动信号的故障特性,从而提高了滚动轴承故障诊断的准确性。 相似文献
17.
利用声发射信号的高频特性采集滚动轴承故障信息,运用小波分析把信号分解在不同频带,对信号进行重构,从而消除背景噪声,再应用Hilbert变换进行解调和细化频谱分析。实验结果证明,基于声发射信号的小波包络谱分析可有效地检测滚动轴承故障。 相似文献
18.
刘冲 《华东交通大学学报》2020,37(4):82-87
轴承通常工作于复杂噪声环境下,使得时域振动信号容易受到各种噪声的污染,从而误导诊断结果。针对以上问题,提出基于一维卷积自编码(1D-DCAE)和一维卷积神经网络(1D-CNN)的联合抗噪故障诊断算法。为了模拟真实噪声环境,在原始振动信号中添加不同信噪比的高斯噪声,用1D-DCAE对原始信号降噪,再将降噪信号用于1D-CNN进行故障诊断。基于全卷积神经网络搭建1D-DCAE模型,并舍弃池化层以降低信息丢失,以提高联合诊断模型的抗噪能力。结果表明:采用基于全卷积网络搭建的1D-DACE有更好的降噪效果,改进后的模型能自适应诊断各种噪声环境下的故障。 相似文献
19.
目前对列车转向架滚动轴承的状态进行监测常常表现出有错报、漏报和监测效率低等问题,针对这一问题,提出了一种基于DSP的滚动轴承故障在线诊断的电路设计,有效地解决了以往监测方法中由于电路问题所出现的不可避免的响应延迟时间及过多的相位噪声等问题. 相似文献