首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分别以3种水泥掺量(3%、4%、5%)和4种旧沥青混合料(RAP)掺量(0%、30%、40%、50%)制备水泥改性冷再生沥青混合料,并将其应用于路面基层。首先,通过击实试验进行混合料配合比设计;然后,通过7 d无侧限抗压强度试验确定混合料的最佳水泥掺量和最佳RAP掺量;最后,采用干湿循环试验和冻融循环试验评价混合料的耐久性能。试验结果表明:水泥改性冷再生沥青混合料的最佳水泥用量为3%,最佳RAP掺量为40%;RAP掺量为40%时,混合料的干湿循环无侧限抗压强度达到最大值,RAP的掺加有效提升了混合料的水稳定性,并且RAP掺量越大,提升效果越明显;水泥有助于混合料抗冻性能的提升,且水泥掺量越大,对于混合料抗冻性能的改善越明显。  相似文献   

2.
刘嘉伟  赵宇成 《公路》2024,(1):343-350
为了确保高RAP掺量的乳化沥青冷再生混合料性能满足路用性能要求,通过开发高性能乳化沥青材料,选择合适的配合比对高性能乳化沥青冷再生混合料的早期抗车辙性能、抗水损性能、早期强度增长特征及疲劳性能进行对比分析。结果表明:采用抗车辙试验评价乳化沥青冷再生混合料通车路面性能,其动稳定度满足规范要求,乳化沥青再生混合料施工完成后可以开放交通;混合料水稳定性满足规范要求,且具有良好的水稳定性;自然养生7 d后的强度与加速养生后强度相当,随着应变水平的降低,乳化沥青冷再生混合料疲劳寿命逐渐提高,整体来说中粒式乳化沥青冷再生混合料疲劳性能优于粗粒式混合料,RAP掺量为100%的乳化沥青冷再生混合料疲劳性能优于RAP掺量为80%的混合料。  相似文献   

3.
为研究RAP冷再生混合料抗裂性能,采用劈裂强度和最大弯拉应变为评价指标,进行冷再生混合料劈裂和低温小梁弯曲室内试验,分析RAP用量、水泥和乳化沥青对冷再生混合料抗裂性能影响规律。研究结果表明:合理RAP用量有利于提高冷再生混合料抗裂性能,超过80%RAP用量后,混合料低温最大弯拉应变逐渐减小,劈裂强度降幅增大;低水泥剂量的冷再生混合料劈裂强度和低温变形能力较优,推荐水泥用量为2%;掺加水泥后,RAP冷再生混合料具有较高早期强度,有利于提前开放交通,缩短工期;随着乳化沥青用量的增加,冷再生混合料抗裂性能先提高后降低,最优乳液用量为7.5%,且改性沥青效果优于基质沥青。  相似文献   

4.
为明确泡沫(乳化)沥青和水泥掺两种粘结材料对冷再生混合料路用性能和耐久性的影响,通过车辙试验、贯入剪切试验、低温弯曲试验、加速加载试验、四分点加载疲劳试验、研究了泡沫(乳化)沥青和水泥两种粘结材料对沥青路面冷再生混合料高低温性能、长期高温抗变形能力以及抗疲劳耐久性性能的影响。试验结果表明,泡沫(乳化)沥青冷再生混合料车辙变形量主要是压密变形所致,水泥掺量越大泡沫(乳化)沥青冷再生混合料抗高温性能和高温剪切疲劳性能越好;随着水泥、沥青粘结料掺量增大,冷再生混合料低温抗裂性能呈先增大后减小的变化趋势,对于泡沫(乳化)沥青冷再生混合料低温抗裂性能而言,存在一个最佳的泡沫(乳化)沥青和水泥用量,在2.0%~4.0%泡沫沥青和2.5%~4.5%乳化沥青用量下适宜的沥青粘结料与水泥掺量比例为1.5∶1~2.7∶1;对于泡沫(乳化)沥青冷再生混合料抗疲劳性能而言,存在一个最佳的沥青粘结料和水泥掺量,为确保冷再生混合料具有最优的抗疲劳性能需达到沥青结合料和水泥掺量的相对平衡,用于冷再生混合料适宜的水泥掺量为1.0%~2.0%。为完善泡沫(乳化)沥青冷再生混合料的材料组成设计方法以及性能评价体系提供了参考。  相似文献   

5.
分别以3种水泥掺量(3%、4%、5%)和4种旧沥青混合料(RAP)掺量(0%、30%、40%、50%)制备水泥改性冷再生沥青混合料,并将其应用于路面基层.首先,通过击实试验进行混合料配合比设计;然后,通过7 d无侧限抗压强度试验确定混合料的最佳水泥掺量和最佳RAP掺量;最后,采用干湿循环试验和冻融循环试验评价混合料的耐久性能.试验结果表明:水泥改性冷再生沥青混合料的最佳水泥用量为3%,最佳RAP掺量为40%;RAP掺量为40%时,混合料的干湿循环无侧限抗压强度达到最大值,RAP的掺加有效提升了混合料的水稳定性,并且RAP掺量越大,提升效果越明显;水泥有助于混合料抗冻性能的提升,且水泥掺量越大,对于混合料抗冻性能的改善越明显.  相似文献   

6.
通过对广东佛山一环高速公路旧路路面使用现状及病害成因分析,提出乳化沥青冷再生试验路路面结构设计方案;为确保乳化沥青冷再生混合料具备良好的路用性能,开展不同RAP掺量、水泥掺量对乳化沥青冷再生混合料性能影响研究,确定RAP掺量为80%、水泥掺量为1.5% 时其综合性能较佳;开展试验路铺筑,总结分析乳化沥青冷再生混合料现场...  相似文献   

7.
采用车辙试验对乳化沥青冷再生混合料高温稳定性进行全面的研究,结果表明:乳化沥青冷再生混合料和热拌沥青混合料的动稳定度均随着温度的升高而降低,但乳化沥青冷再生混合料的高温稳定性和抵抗永久变形的能力更为突出;随着水泥用量的增加,乳化沥青冷再生混合料的动稳定度得到明显的提升,为保证混合料的整体路用性能建议乳化沥青冷再生混合料水泥掺量取0.5%~1.0%;减少乳化沥青用量可以一定程度上提升混合料的高温稳定性,但会引发混合料出现破碎松散病害,合理的选取其用量是保证乳化沥青冷再生混合料综合路用性能的关键之一;养生时间对乳化沥青冷再生混合料的动稳定度和变形量有很大影响,应保证足够的养生时间以保证混合料良好的路用性能。  相似文献   

8.
为了分析水泥对改性乳化沥青冷再生混合料力学性能的影响,以AC - 25沥青混合料级配为基准,通过室内对比试验,对不同水泥掺量的改性乳化沥青冷再生混合料的疲劳耐久性、低温稳定性、高温稳定性及水稳定性等力学性能进行系统研究.研究结果表明,一定掺量的水泥有利于改善改性乳化沥青冷再生混合料的疲劳耐久性,但水泥增加至3.0%时,其进一步的改善效果并不显著;以破坏应变评价混合料低温性能时,指标具有较高的灵敏性,当水泥用量为2.0%时低温性能最佳;水泥的掺加显著地提高了改性乳化沥青冷再生混合料的高温稳定性和水稳定性,其在改性乳化沥青冷再生混合料中发挥着重要的作用.  相似文献   

9.
随着泡沫沥青冷再生混合料在国省干线和高速公路等高等级公路下面层中的大规模应用,其低温抗裂性需引起更多关注。采用低温弯曲试验和SCB试验研究了水泥掺量、泡沫沥青用量、RAP掺量对泡沫沥青冷再生混合料低温抗裂性的影响,基于SEM试验揭示了水泥和泡沫沥青对冷再生混合料低温抗裂性的影响机理。结果表明,增大水泥掺量和提高泡沫沥青用量均可改善泡沫沥青冷再生混合料的低温抗裂性,RAP掺量对泡沫沥青冷再生混合料低温性能影响不大,推荐采用低温SCB试验评价泡沫沥青冷再生混合料的低温抗裂性,以弯拉应变和破坏应变能作为评价指标,建议泡沫沥青冷再生破坏应变能不少于1 500 J/m2。水泥对泡沫沥青冷再生混合料的影响机理在于加筋、填充和减小了泡沫沥青冷再生混合料内部微孔数量。  相似文献   

10.
乳化沥青冷再生混合料疲劳性能研究   总被引:1,自引:0,他引:1  
采用目前工程上常用的两档沥青路面铣刨旧料对RAP掺量为80%和100%的乳化沥青冷再生混合料进行材料组成设计.通过击实试验和劈裂试验分别确定其最佳流体含量和最佳乳化量用量.在配合比设计基础上采用控制应变加载模式对乳化沥青冷再生混合料疲劳性能进行试验研究,确定了加载较为合理的应变水平,即300,250,200με和150με.试验结果表明,在应变水平较高时,两种RAP掺量下乳化沥青冷再生混合料能承受有限的荷载作用次数,当应变水平降低到150 μe时,两种RAP掺量混合料在150万次荷载作用下仍未破坏,采用劲度模量与荷载作用次数预估的方法确定了疲劳寿命.通过对4种应变水平-荷载作用次数进行疲劳曲线拟合,提出两种RAP掺量下乳化沥青冷再生混合料的应变控制指标.  相似文献   

11.
郑灿伟 《公路》2022,(4):82-86
为提高乳化沥青冷再生混合料路用性能,制备70%RAP(废旧沥青路面回收材料)掺量的水性环氧乳化沥青冷再生混合料进行研究。通过击实试验及劈裂试验确定水性环氧乳化沥青冷再生混合料的最佳含水量和最佳乳化沥青用量分别为4.0%、4.3%;采用沥青混合料车辙试验、低温弯曲试验、冻融劈裂试验及四轮加载磨耗试验评价水性环氧乳化沥青冷再生混合料的性能。试验结果表明:水性环氧乳化沥青冷再生混合料具有更好的高温稳定性、水稳定性和耐久性;低温抗裂性略有降低,但仍满足规范要求;推荐水性环氧树脂掺量为10%。  相似文献   

12.
为了检验泡沫(乳化)沥青冷再生混合料抗剪切性能,采用简易三轴试验模拟路面内部沥青冷再生混合料的受力状态,分析沥青结合料的种类和掺量、试验级配、水泥掺量、RAP掺配比例对混合料抗剪切强度的影响。结果表明:泡沫(乳化)沥青冷再生混合料具有较大的内摩擦角和较小的黏聚力;泡沫(乳化)沥青最佳用量可采用简易三轴试验剪切强度峰值确定。  相似文献   

13.
为研究材料组成变化对乳化沥青冷再生混合料永久变形特性的影响,在40℃试验温度下改变乳化沥青和水泥掺量,对乳化冷再生混合料进行动态单轴蠕变试验。结果显示,掺入适量水泥可提高混合料早期抗车辙性能和劲度模量,改善混合料的弹性恢复性能;乳化沥青用量增加使混合料抗变形能力和劲度模量下降,其用量超过4%时抗变形能力下降速率增大,存在令残留变形率最低的最佳乳化沥青用量;水泥可提高混合料的永久变形性能,但提高效果受水化反应程度影响,考虑混合料和易性、抗裂性、经济性等,水泥用量不宜过大;过大的乳化沥青用量对混合料永久变形性能有不利影响,工程应用中乳化沥青用量宜等于或略小于最佳沥青用量。  相似文献   

14.
针对我国现有规范关于乳化沥青冷再生混合料初期强度评价的空白,选取磨耗试验作为评价方法,用对比试验确定了试验的关键参数,包括成型方式、养生温度、养生相对湿度以及养生时间;分析了不同乳化剂种类、乳化剂剂量、乳化沥青用量、水泥剂量和矿料级配对乳化沥青冷再生混合料初期抗磨耗性能的影响,据此提出相应的技术要求;利用方差分析法,分析了不同影响因素的显著性。结果表明:提出的磨耗试验简单、可靠,可用于评价乳化沥青冷再生混合料的初期抗磨耗性能;马歇尔击实法或旋转压实法均可作为磨耗试验试件成型方式,推荐采用大型马歇尔击实法(双面各击实75次)作为标准成型方式;养生条件对乳化沥青冷再生混合料磨耗损失影响较大,随温度的升高或养生时间的延长,磨耗损失均逐渐减小,随相对湿度的增加,磨耗损失逐渐增大;结合我国国情,拟定磨耗试验试件标准养生温度为25℃,养生相对湿度为70%,养生时间为4 h。以磨耗损失不大于3.5%为控制指标,可作为优化乳化沥青冷再生混合料配合比设计的依据;影响乳化沥青冷再生混合料初期抗磨耗性能的各因素依次为水泥剂量乳化剂种类矿料级配乳化沥青用量乳化剂剂量,水泥剂量、乳化剂种类和矿料级配对冷再生混合料初期强度影响显著。  相似文献   

15.
为研究新集料掺量对乳化沥青冷再生混合料力学特性的影响规律,通过室内试验对不同新料掺量的乳化沥青冷再生混合料进行配合比设计,并对冷再生混合料进行力学性能试验,研究新料掺量对冷再生混合料力学性能的影响规律。研究结果表明:随着新料掺量的增加,冷再生混合料劈裂强度、马歇尔稳定度及抗压强度均逐渐增大;当冷再生混合料用于下面层时,建议RAP料掺量不高于80%。  相似文献   

16.
沥青路面冷再生技术将废旧沥青混合料作为原材料,加入乳化沥青、水泥及外加剂,拌合成新的混合料用于铺筑路面,可节约材料、降低造价、节能环保。现采用不同乳化剂类型的乳化沥青作为结合料,在不同乳化沥青用量和水泥用量条件下,进行冷再生沥青混合料物理参数及高、低温性能的试验研究,分析乳化剂类型、乳化沥青用量和水泥用量对混合料高、低温性能的影响。通过试验研究,得到了满足混合料性能规范要求的最佳乳化沥青用量和水泥用量。研究结果对冷再生沥青混合料的工程应用提供理论依据。  相似文献   

17.
依托某高速公路大修工程,对现场冼刨RAP材料进行了分析。选用改性乳化沥青为粘结料,室内试验确定了最佳用水量和最佳改性乳化沥青用量均为4%,进而确定了目标配合比为RAP(10~31.5)∶RAP(0~10)∶矿粉∶水泥∶外加水∶改性乳化沥青=43∶57∶2.5∶1.5∶4∶4,通过室内性能试验验证,表明乳化沥青厂拌冷再生混合料技术可行,路用性能良好。  相似文献   

18.
在RAP比例为20%、50%两种条件下、选用3种水泥用量和2种乳化沥青用量进行水泥—乳化沥青再生沥青混合料(CEARM)配合比设计试验,通过比较CEARM初期强度和后期强度,分析了水泥对乳化沥青冷再生混合料强度的影响。结果表明:水泥能显著提高再生混合料的早期强度,对后期强度的影响因RAP比例的不同而异,并据此提出了水泥和乳化沥青适宜用量的确定方法。  相似文献   

19.
乳化沥青冷再生混合料需要一定的破乳时间形成强度,从而导致施工工期延长,且混合料强度较低会致使路面后期出现松散、坑洞等病害。通过添加水泥一方面可以加速乳化沥青的破乳速度,同时能够显著提高冷再生混合料的早期强度。该文通过粘结力试验和抗磨耗试验对不同水泥掺量的乳化沥青冷再生混合料早期强度进行了分析研究,且对其水稳定性进行了分析研究。结果表明:随着水泥掺量的不断增加,乳化沥青冷再生混合料的早期强度和抗水损害性能逐渐增大,同时水泥加速了乳化沥青冷再生混合料早期强度的获取速率。然而水泥用量过高时会使冷再生混合料变脆,导致混合料低温性能降低,因此在设计时需要严格控制水泥的掺量。  相似文献   

20.
为了研究水泥对乳化沥青冷再生材料性能的作用机理和确定水泥掺量的最佳范围,本研究对不同水泥掺量(0%~5%)的乳化沥青冷再生材料进行了微观形貌观测和化学成分分析,并对乳化沥青混合料性能进行宏观力学测试。通过扫描电镜测试和电子能谱分析表明:(1)扫描电镜观测到的纤维状晶体确实为水泥与混合料中的水相发生水化反应生成的水化产物,这些水泥水化产物和沥青形成的胶浆复合物在空间中呈立体网格结构;(2)水泥掺量为1%~2%时,水泥水化后的产物没有形成棱角分明的纤维晶体,呈圆柱状,纤维较短(10μm),大多分布在5μm左右,当水泥掺量大于3%时,水化后的晶体分布致密,呈针状,纤维较长(部分水泥水化产物晶体长度 20μm);(3)这些水泥水化产物对乳化沥青冷再生混合料具有"加筋"作用,能够提高乳化沥青冷再生混合料的早期强度。通过高温车辙试验、小梁低温弯曲试验及抗水损害试验研究发现:(1)乳化沥青冷再生混合料的高温稳定性和水稳定性随着水泥掺量的增加而提高;(2)低温性能随着水泥掺量的增加呈现先升高后降低的变化特性,当水泥掺量在1%~2%范围内,乳化沥青厂拌冷再生混合料性能最佳。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号