首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
汪磊 《公路》2020,(2):139-142
采用midas/civil对某大跨径PC连续刚构桥进行有限元分析,比较各钢束在不同预应力损失下及张拉备用束后对桥梁结构应力和变形的影响。研究表明:预应力损失越大,中跨跨中相对挠度越大;随着预应力的损失,跨中下缘正压应力逐渐减小。顶板、底板钢束预应力的损失对桥梁中跨跨中挠度和下缘正应力影响较大。张拉备用束对改善桥梁长期下挠病害较为有效,且原预应力损失的程度不影响张拉备用束对桥梁挠度及应力的改善作用。  相似文献   

2.
为研究预应力损失对大跨度PC连续梁桥桥梁性能的影响,采用MIDAS/CIVIL对某跨径布置为(60+100+100+60)m的PC连续梁桥进行计算分析,研究了纵向预应力的顶、底、腹板钢束在发生单一损失类型、双重组合损失类型和三重组合损失类型情况下,预应力损失程度对桥梁主跨跨中下缘压应力σz、主跨跨中挠度fl/2和桥梁一阶自振频率n的影响,结果表明:无论发生何种损失类型,预应力损失程度与σz、fl/2的关系均为线性相关规律;预应力损失将导致σz减小和fl/2增大,其中,σz减小主要由顶、底板钢束预应力损失所致,fl/2增大主要由底板钢束预应力损失所致,三重和双重组合损失类型相对于单一损失类型时的σz和fl/2结果表现为叠加关系;桥梁一阶自振频率n不受纵向预应力损失影响。  相似文献   

3.
以栗子坪大桥——大跨径预应力混凝土连续刚构桥为工程实例,采用有限元程序Midas/Civil对其进行施工过程和运营阶段仿真计算,分析混凝土超方、预应力损失、混凝土收缩徐变、刚度损失等因素对大跨径预应力混凝土连续刚构桥跨中长期挠度的影响。计算结果表明:混凝土超方和桥面铺装施工误差导致的自重增加均可引起桥梁跨中长期挠度增加,后者超重使桥梁跨中长期挠度增加更大;预应力损失对桥梁跨中长期下挠影响非常显著,其中顶板束预应力损失影响最大,其次是腹板束,底板束影响最小;桥梁跨中长期挠度与终极徐变系数、环境相对湿度的变化有很大关系;梁体刚度降低使桥梁跨中长期挠度增加较多,且早期刚度的降低对桥梁跨中挠度增加影响较大。  相似文献   

4.
为给特大跨波形钢腹板组合箱梁桥体外预应力设计提供参考,以港珠澳珠海连接线工程前山河特大桥为背景,介绍体外预应力体系的布设、转向与锚固装置的设计细节、体外束保护与减振装置的构造及减振机理。采用有限元软件,建立体外预应力钢束转向块、锚固端节段及运营阶段全桥有限元数值模型,分析转向块及锚固端的局部应力,研究施加体外预应力后运营阶段结构受力情况,比较不同体外预应力张拉工序对成桥状态结构挠度、应力、弯矩等力学性能的影响。结果表明:转向块及锚固端节段满足结构局部应力安全要求;运营阶段结构挠度、混凝土主梁及波形钢腹板应力均满足设计规范要求,结构安全可靠;"全桥合龙后先张拉中跨,后对称张拉边跨"的体外束张拉方案为最优方案。  相似文献   

5.
纵向预应力束筋张拉对连续梁桥挠度的影响   总被引:1,自引:2,他引:1  
利用虚位移理论计算了桥梁纵向预应力束筋张拉对连续梁桥主梁挠度的影响,编制平面杆系有限元程序计算了预应力张拉前后主梁挠度的变化值,并将实际工程的实测值与计算值进行了比较,验证了计算公式的可靠性.  相似文献   

6.
以大埠河大桥、蛇背大桥两座大跨混凝土连续刚构桥为实例,采用数值模拟计算的方法,对主梁施工全过程进行模拟分析,研究施工阶段预应力损失情况,并分析不同预应力损失对大跨混凝土连续刚构桥长期性能的影响。模拟边跨底板束钢绞线B、边跨顶板束TB、顶板束T、腹板束F、跨中底板束Z、跨中顶板TZ预应力减少20%对主梁运营阶段收缩徐变变形的影响,研究结果表明,顶板束预应力损失对主梁竖向下挠的影响最大。研究预应力损失影响对于控制主梁后期下挠,增加大跨混凝土连续刚构桥的长期性能具有重要的意义。  相似文献   

7.
大跨度预应力混凝土梁桥预应力损失及敏感性分析   总被引:5,自引:0,他引:5  
预应力损失估计不足是目前大跨度预应力混凝土梁桥出现下挠、开裂等病害的主要原因之一.简要对比中美几种规范并结合一座悬臂灌注施工的大跨度桥梁,对悬臂束和合龙束的预应力损失规律进行定量分析和探讨,同时还进行预应力损失对桥梁挠度和应力状态的敏感性分析.研究表明,若预应力损失计算偏小,则会导致对桥梁内力和挠度计算的较大失真.  相似文献   

8.
预应力混凝土连续箱梁桥的结构形式因其具有结构变形小、整体受力性能好等优点而被广泛应用,但是在桥梁运营阶段,梁体会因桥梁设计及施工过程中考虑收缩徐变不足而产生裂缝和不同程度的下挠现象。为了考虑混凝土收缩徐变对结构性能的影响规律,该文以青弋江客运专线预应力混凝土单箱三室连续梁桥为背景,通过有限元分析软件Midas/Civil对收缩徐变引起的主梁挠度、内力、钢束预应力损失进行对比分析。结果表明:混凝土收缩徐变引起主梁挠度增大,对中跨跨中附近影响尤其显著,考虑收缩徐变影响后主梁挠度变化曲线与实测值吻合度较好;混凝土收缩徐变导致主梁内力重分布,在成桥后前3年影响速率较大,以后逐渐趋于稳定;混凝土收缩徐变引起的钢束预应力损失,在跨中附近影响程度较大,在桥墩处影响程度较小;收缩徐变效应在成桥3年时已完成绝大部分。  相似文献   

9.
田振中 《公路》2021,(5):171-175
梁拱组合桥构造相对复杂,施工过程不确定因素对桥梁线形及受力影响较大。通过建立精细化空间杆系有限元模型,研究预应力张拉误差和混凝土荷载等力学参数变化对结构应力及桥梁线形的影响。分析结果表明:当主梁混凝土自重比设计值大时,主梁顶板压应力减小,底板压应力增大,跨中合龙段附近主梁向上挠度减小;在梁拱组合桥成桥阶段,预应力张拉误差对主梁跨中挠度影响较为突出,梁拱组合桥在最大悬臂阶段预应力误差对桥墩附近主梁的挠度影响相对较小,越靠近悬臂端预应力误差对主梁的挠度影响越大。研究成果可为梁拱组合桥的设计及施工过程提供技术参考。  相似文献   

10.
大跨径预应力砼箱梁桥运营中梁体会随着时间的推移发生下挠,严重影响桥梁的运营安全。文中以湖南省涟源龙塘至新化琅塘高速公路白芦大桥为依托,采用倾角仪对其挠度进行监测,并运用灰色模型进行挠度预测。结果表明,倾角仪实测挠度与灰色模型预测挠度基本一致,采用灰色模型预测大跨径预应力砼箱梁桥挠度的整体精度高、可靠性强,能实时预测桥梁变形。  相似文献   

11.
结合实例,分析大跨径预应力混凝土连续梁桥在悬臂施工过程中温度对主梁结构应力和挠度的影响。通过合理选择立模时机和在不同温度下适当调整立模标高,使主梁线形平顺。在梁体温度均匀时张拉预应力钢束,可减少结构的预应力损失。结构应力和应力增量的确定,为改进施工工艺参数提供了科学依据。  相似文献   

12.
以某预应力混凝土连续刚构桥为工程背景,比较了不同预应力钢束损失和不同位置预应力钢束损失对箱梁成桥线型的影响,分析了不同预应力损失情况下混凝土徐变对预应力混凝土连续刚构桥成桥线型的影响,指出了预应力混凝土连续刚构桥箱梁挠度与桥梁结构受力状态有关,与桥梁跨径关联不大。  相似文献   

13.
洛溪大桥全长1916.04m、主桥上部结构为预应力混凝土连续刚构,基础为φ1.5m钻孔灌注桩,矩形断面薄壁空心墩。该桥具有桥高、跨大、结构混凝土标号高等特点。为全面了解该桥混凝土的收缩徐变及结构在常载作用下的变形规律,保证桥梁运营的可靠性,对该桥进行了为期三年的挠度观测。叙述了测点布置、观测时间与方法以及观测结果。表明:该桥通车约一年半时,180m跨中挠度值为整个三年观测期挠度的80%;六条观测挠度变形曲线规律性良好,结构在常载作用下无异常情况出现;通车三年后,180m跨中最大挠度仅为跨径的L/2831,说明结构设计控制合理,大吨位预应力张拉质量良好,预备束暂可不张拉。  相似文献   

14.
吴湛 《公路与汽运》2023,(5):124-127+131
采用MIDAS/Civil建立某大跨预应力连续梁桥有限元模型,分析不同施工阶段荷载作用下桥梁位移和应力变化及施工过程中温度对主梁挠度的影响。结果表明,一个梁段施工完成后会影响前一个梁段标高,但各梁段控制偏差变化趋势大致相同;梁段悬臂越长,浇筑、张拉前后挠度越大;温度对悬臂梁段变形有很大影响,温度越高,悬臂竖向变形越大;大跨径连续梁桥悬臂施工时,预应力张拉产生的位移只能抵消一部分恒载位移;浇筑、张拉前后箱梁实测应力大多小于理论值,最大悬臂时梁段的预应力储备增大。  相似文献   

15.
结合某预应力混凝土连续梁桥,通过现场试验测试管道摩阻参数的大小,从桥梁线形和梁截面应力两个方面进行管道摩阻参数敏感性分析。研究结果表明:实测的预应力钢筋与管道壁的摩擦系数μ=0.42,管道每米局部偏差对摩擦的影响系数k=0.006,两者均比规范值偏大。k值和μ值对主梁最大挠度和梁截面应力有着重要的影响,后者的影响更加敏感,为前者的1~2倍,主梁最大挠度随着μ值或k值的变化呈线性变化,k值和μ值耦合变化的影响远大于其单独变化的影响。  相似文献   

16.
在5片预制预应力高性能混凝土梁中埋设振弦式应变传感器,从制作起测其应力已有3年.通过测试梁预应力钢束处混凝土应变变化来反映预应力的变化.实测总预应力损失约为总张拉应力的28%,较高压应力使高性能混凝土梁的预应力损失比普通混凝土梁大.按美国国家公路与运输协会标准制定的标准荷载抗力系数(AASHTO LRFD)和美国公路合作研究组织(NcHRP)18-07课题中推荐的相关标准分别计算出预应力损失,并与实测值进行对比.对第2跨梁的平均预应力损失进行评估,采用AASHTO LRFD法估高了20%,而采用NCHRP法估低16%,NCHRP法更具包容性和地域适应性.按实测数据计算弹性压缩预应力损失并考虑第2跨连续梁不均匀收缩所得平均实测预应力损失值与按照NCHRP法计算值之间误差在10%以内.  相似文献   

17.
张守军 《世界桥梁》2022,50(3):108-114
某预应力混凝土变截面连续箱梁桥跨径布置为(45+70+45) m,主梁为单箱单室截面,跨中部位腹板厚30 cm,采用双向预应力结构,运营20余年后检测发现箱梁腹板存在大量斜裂缝,且中跨跨中明显下挠。分析认为病害主要是由腹板抗剪承载力不足、预应力损失和重载车辆增加等因素引起的,基于病害原因,提出采用腹板加厚、增设预应力筋和粘贴钢板的组合方式进行加固,加固设计验算结果表明加固后结构承载能力和正常使用极限状态下各项指标均满足规范要求。加固施工过程中各监测断面实测应力增量与计算值基本接近,实测位移增量略小于计算值;静载试验结果表明结构刚度、强度满足要求,结构基本处于弹性工作状态。加固后近3年的跟踪观测未发现腹板剪切裂缝有继续发展现象,跨中挠度没有增加,结构抗剪性能得到明显提升。  相似文献   

18.
三门峡黄河公路大桥的主桥加固   总被引:10,自引:1,他引:9  
马健 《公路》2004,(6):62-64
三门峡黄河公路大桥主桥为 10 5 m +4× 14 0 m +10 5 m预应力混凝土连续刚构桥 ,通车 4年后出现各跨跨中下挠 ,梁体出现大量裂缝 ,且病害还在不断发展 ,结构承载力逐渐下降 ,检测后属三类桥。经裂缝灌胶、增加体外预应力束、粘贴钢板等加固后 ,明显地改善了桥梁的应力状况 ,确保了桥梁承载力 ,跨中挠度也得到了控制。  相似文献   

19.
文章通过某大跨预应力混凝土连续箱梁桥施工时对腹板竖向预应力损失进行的实桥测试,对不同长度箱梁竖向预应力损失的影响因素试验研究,并与规范理论计算值进行对比,并提出相应的控制措施和改进建议,为同类桥梁今后的竖向预应力设计和施工积累经验。  相似文献   

20.
为掌握宽弯斜混凝土箱梁的荷载效应分布特征,以某5×20m的预应力混凝土连续梁桥(箱梁宽54m,曲线半径小,斜交)为背景,开展从混凝土箱梁浇筑至运营前共1年的监测,采集并分析箱梁的应变和挠度;基于梁格法,建立箱梁有限元模型,分析箱梁纵、横向应力及竖向挠度。结果表明:监测期内,箱梁的应变和挠度变化显著;钢束张拉后箱梁跨中底板横向压应变小幅减小;满堂支架拆除后箱梁应变调整1~2d;箱梁纵向应变长期趋于平稳;预应力引起跨中上拱,曲线内侧至外侧上拱幅度逐渐减小;跨中断面横向应变比例集中在0~1且极值相差很小;弯桥与直桥跨中断面纵向应力差与曲线半径正相关;弯扭耦合作用下箱梁外侧箱室挠度陡增;宽跨比较大的曲线箱梁可按梁格法计算,进行纵向配束,并加强横向设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号