首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为连续快速检测路面动态弯沉,通过建立行车荷载作用下沥青路面有限元动态模型,研究了在不同行车速度、不同测点的弯沉大小;通过改变路面各层厚度和模量对路面动态弯沉特性进行了研究。研究结果表明:不同车速条件下的路面动态弯沉并不相同,车速愈高弯沉愈小,并且弯沉最大值滞后于行车荷载作用的峰值;路面厚度增加显著减小路面动态弯沉,厚度对弯沉影响的大小依次为面层、基层和底基层;各层模量的增加将使路面的动态弯沉减小。  相似文献   

2.
为探明不同车速条件下路表弯沉的变化规律,依托实体工程,建立三维有限元公路模型,采用动态材料参数,开发了动态车辆荷载模型,计算了多车速条件下的路表弯沉.结果显示,路表弯沉时变曲线分为压缩、拉伸两个阶段;车速由40 km/h提升至100 km/h,路表弯沉峰值增加超过5%.动态计算结果表明,高车速时路面疲劳寿命降低,轮胎和路面间冲击作用是路表弯沉增大的主因.  相似文献   

3.
车辆联轴间距的不同会对路面造成影响,采用ANSYS软件建立半刚性基层沥青路面的三维有限元分析模型,采用Adams软件建立某品牌重型货车的车辆动力学模型,分析非均布动载荷下双联轴货车联轴间距不同时路面的动态响应特性.结果表明,该车型在联轴间距为1440mm时,路表动态弯沉、沥青面层层底应力、基层层底应力以及沥青面层层底正...  相似文献   

4.
为研究不同温度条件下沥青路面的实际动力响应规律,铺设了3种典型沥青路面试验路,通过落锤式弯沉仪(FWD)开展了温度对路表动态弯沉盆特性的影响作用分析,并通过动态应变传感器获取了不同温度下FWD荷载产生的沥青层底应变响应。研究结果表明:路表动态弯沉盆的各测点弯沉值随径向距离的增加逐渐减小,随荷载水平的增加逐渐增大,随路面温度的增加显著增大;随着温度的提高,路表动态弯沉盆的影响范围显著减小;通过回归分析方法确定沥青层底应变响应的温度修正系数,有助于实现实际温度下的应变响应向标准参照温度的转换。  相似文献   

5.
为了研究车辆荷载作用下排水基层路面的动力响应,同时考虑车速和轴载的影响,采用移动加载的方法,对不同工况下沥青路面进行了快速Lagrange有限差分分析。结果表明,路面弯沉并未因排水基层的低模量而增大,峰值甚至有所减小;排水基层的存在减小了底基层底部的动应力,可以抑止反射裂缝的产生;弯沉及动应力均随车速的增大而减小,高温季节,低速行驶更容易引起大车辙;当车辆超载50%时,弯沉和动应力均成倍增大,导致路面产生较大变形甚至塑性破坏,且更容易引起路面开裂,表明治理超载对延长道路使用寿命,降低养护成本具有重要意义。  相似文献   

6.
为了研究车辆荷载作用下排水基层路面的动力响应,同时考虑车速和轴载的影响,采用移动加载的方法,对不同工况下沥青混凝土路面进行了快速Lagrange有限差分分析.结果表明,路面弯沉并未因排水基层的低模量而增大,峰值甚至有所减小;排水基层的存在减小了底基层底部的动应力,可以抑制反射裂缝的产生;弯沉及动应力均随车速的增大而减小...  相似文献   

7.
阳宏毅 《中外公路》2012,(1):98-101
通过采用有限元动力分析软件ANSYS/LS-DYNA建模,计算水泥混凝土路面在脱空因素影响下的应力和挠度状态,并分析路面在动态荷载作用下弯拉应力和挠度随时间变化的历程曲线,分析弯拉应力和弯沉的动态力学响应,为水泥路面动态疲劳分析提供参考。  相似文献   

8.
利用ANSYS有限元分析软件建立沥青路面结构有限元分析模型,计算了不同行车速度条件下轮隙中心处和荷载作用面正下方的路表弯沉响应规律,研究弯沉和行车速度的关系;然后考虑不同荷载水平,分析重载条件下的路表弯沉响应.研究表明,沥青路面动态弯沉和静态弯沉之间存在显著差异,移动荷载(车速为30 km/h)作用下路表弯沉为静载作用下路表弯沉的50%左右;随行车速度增加,路表弯沉峰值减小,且峰值出现时间出现滞后;超载60%和140%时,弯沉等效的轴载换算系数分别为0.93和1.03,大于规范给出非标准轴载按弯沉等效的轴载换算系数0.87.  相似文献   

9.
FWD荷载作用下刚性路面弯沉的动力响应分析   总被引:1,自引:0,他引:1  
对于Kelvin地基上的混凝土板,利用有限元软件ANSYS,建立了落锤式弯沉仪(FWD)荷载作用下刚性路面的瞬态动力分析模型.通过改变地基阻尼系数和混凝土面板材料阻尼系数,研究路表弯沉的动力响应特征.探计了在不同的荷载频率作用下,路面弯沉峰值的变化规律,得出了刚性路面结构的临界频率.结果表明,阻尼系数越大,弯沉的峰值越小,而且路面阻尼较路基阻尼对弯沉峰值延迟效应更为明显;当加载频率高于临界频率时,随着频率值的增大,弯沉峰值逐渐减小;当加载频率低于临界频率时,随着频率值的增大,弯沉峰值逐渐增大,最后趋近于静力荷载作用下的弯沉值.  相似文献   

10.
采用弹性地基板模型,利用有限元方法分析了落锤式弯沉仪(FWD)荷载作用下水泥混凝土路面板角弯沉值的变化规律。提出以弯沉率作为评价指标,得到了弯沉率与板角脱空面积的近似关系式。根据不同路面结构参数下弯沉值的变化对关系式进行修正,尝试建立水泥混凝土路面板角脱空面积的分析方法。通过工程实例分析,表明该分析方法判别水泥混凝土板角脱空面积是可行的。  相似文献   

11.
基于正弦函数变化的路面不平度和两自由度的四分之一车辆模型,推导出车辆随机动荷载计算公式,研究路面不平度对车辆荷载作用下低路堤动力响应的影响规律。建立车-路耦合三维动力有限元模型,计算分析6种工况下不同路面不平度时车辆随机动荷载作用下低路堤的动应力,得出低路堤动应力均随路面不平度值的增加而增大,且与车辆附加动荷载系数m近似为线性关系;提出不同路面不平度时车辆随机动荷载作用下低路堤动应力计算模型,并对比有限元模型得到的低路堤动应力与应力计算模型得到的低路堤动应力。  相似文献   

12.
The influence of the tyre–road contact model on the simulated vertical vibration response was analysed. Three contact models were compared: tyre–road point contact model, moving averaged profile and tyre-enveloping model. In total, 1600 real asphalt concrete and Portland cement concrete longitudinal road profiles were processed. The linear planar model of automobile with 12 degrees of freedom (DOF) was used. Five vibration responses as the measures of ride comfort, ride safety and dynamic load of cargo were investigated. The results were calculated as a function of vibration response, vehicle velocity, road quality and road surface type. The marked differences in the dynamic tyre forces and the negligible differences in the ride comfort quantities were observed among the tyre–road contact models. The seat acceleration response for three contact models and 331 DOF multibody model of the truck semi-trailer was compared with the measured response for a known profile of test section.  相似文献   

13.
A key factor to understand the vehicle dynamic behaviour is to know as accurately as possible the interaction that occurs between the tyre and the road, since it depends on many factors that influence the dynamic response of the vehicle. This paper aims to develop a methodology in order to characterise the tyre–road behaviour, applying it to obtain the tyre–road grip coefficient. This methodology is based on the use of dynamic simulation of a virtual model, integrated into a genetic algorithm that identifies the tyre–road friction coefficient in order to adjust the response obtained by simulation to real data. The numerical model was developed in collaboration with SEAT Technical Centre and it was implemented in multibody dynamic simulation software Adams®, from MSC®.  相似文献   

14.
轮毂电机驱动电动汽车的簧下质量大导致轮胎动载荷增加,并且电机电磁力和转矩波动对车轮造成电机激励,进一步加剧车轮振动引起垂向振动负效应的问题。鉴于此,考虑电机的电磁激励,建立了电动汽车-路面系统的机电耦合动力学模型,推导了弹性支撑边界条件下路面结构的模态频率和振型表达式,以及路面振动引起的二次激励。计算了简支与弹性支撑边界条件下的路面模态频率,根据频率分布进行了截断阶数选取,并分析了边界条件、电机激励和车速对路面响应的影响。在此基础上,研究了不同行驶速度、路基反应模量及路面不平顺幅值下,激励形式对汽车车身加速度、悬架动挠度和轮胎动载荷的影响。结果表明:路面不平顺幅值越小,弹性支撑对路面响应的影响越大,弹性支撑边界条件下的路面响应较小,电机激励会引起路面响应的增加;弹性支撑边界条件下,路面不平顺幅值和路基反应模量越小,考虑路面不平顺、路面二次激励和电机激励的三重综合激励对电动汽车响应的影响越大,激励形式对轮胎动载荷的影响最大,对车身加速度的影响次之,对悬架动挠度的影响最小;电机激励导致轮胎动载荷增加,对路面破坏和寿命产生的负效应不容忽视。所建电动汽车-路面系统机电耦合模型及研究思路可为电动汽车垂向动力学分析提供参考与理论支持。  相似文献   

15.
利用汽车的两自由度模型,应用Simulink软件仿真分析了车速与路面不平度对车轮随机动载变化趋势的影响。同时也分析了车轮随机动载的大小对路面疲劳应力的影响,指出了不同车速和路面不平度引起的路面动力反应及损伤变化规律,即车速和路面不平度的增加将导致汽车动载的增加,从而加速路面的损伤。提出了针对路面状况调整车速可以降低车轮随机动载,从而达到减轻路面损伤的要求。  相似文献   

16.
为了将实测得到的国际平整度指数IRI值引入到路面不平度模拟中,从而在车一路或车一桥相互作用的耦舍体系中更准确地模拟由路面不平度引起的车辆动荷栽,提出了一种通过实测IRI值得到该段路路面不平度的方法.由IRI的计算方法入手,通过建立1/4车模型来分析路面不平度的输入和车辆、地面的振动响应,并通过路面不平度标准差与IRI的关系等式作为中介,将IRI引入到路面不平度的模拟中,采用周期图表法,利用功率谱密度函数和傅立叶逆变换,进一步模拟出路面不平度.最后进行了实例模拟,通过程序分析,验证了该方法的有效性.  相似文献   

17.
重型车辆与路面耦合作用的仿真分析研究   总被引:1,自引:0,他引:1  
针对车-路系统以及车-路耦合作用的特点,运用ADAMS动力学仿真软件,建立了某重型车的多自由度仿真模型,并利用ADAMS对模型进行了仿真计算,分析了车辆以不同载重量、不同速度行驶于不同等级路面时,车辆对路面的动载荷作用。结果表明:车-路耦合产生的动载作用受路面工况的影响较大,随着路面等级的降低,车辆对路面的动载荷有着显著的增大;在车辆正常行驶速度范围内,车辆对路面的动载荷也随着车速的增加而增大;而在相同条件下。满载车辆较空载车辆对路面的动载荷要大很多,即满载对路面的破坏作用更为显著。  相似文献   

18.
为了分析车辆以不同速度和不同载质量行驶于不同波长、振幅和坡度的波形路面时,车辆对路面的动载荷作用,根据綦万高速公路路面平整度的实测结果,得到描述波形路面的参数即波长和振幅,编制路面文件,在ADAMS中模拟波形路面,并以现有某红岩重型卡车为研究对象,利用ADAMS多体动力学分析软件建模仿真,建立其车架、悬架和驾驶室等的多体动力学模型,对整车模型进行仿真计算,揭示了车辆动载与路面不平度之间的关系,提出了降低车轮动载荷的方法。  相似文献   

19.
A model of the relationship between a vehicle wheel and the unevenness of the road surface is defined. The wheel is considered to be of circular shape. For a given form of unevenness, the excitation functions are evaluated for the individual subsystems of the dynamic vehicle model having 5 degrees of freedom. The vehicle model traverses the uneven surface at a variable velocity. The model provides for the study of the complex dynamic phenomena which occur between the wheel and the unevenness. The response of the model also includes the dynamic stress on the drive when the wheel passes over the unevenness of the road surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号