首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为确保南京长江第四大桥北锚碇沉井安全、顺利地下沉至设计标高,在沉井施工过程中实施了信息化的监控技术,主要介绍了北锚碇沉井施工过程中的信息化监控技术,包括监控元器件的布设、结构应力应变的监控、侧壁土压力的监控、监控数据的分析等内容。  相似文献   

2.
南京长江第四大桥北锚碇矩形沉井高52.8 m,共分11节,分4次接高下沉施工,其中前4节采用整体降排水下沉施工,后7节分3次采用不排水下沉施工,主要介绍北锚碇沉井前4节整体降排水下沉施工关键技术。  相似文献   

3.
沉井下沉技术在泰州长江公路大桥北锚碇中的应用   总被引:4,自引:0,他引:4  
针对沉井施工的特点.介绍了泰州长江公路大桥北锚碇大型沉井下沉过程中所采用的下沉技术和主要施工要点及其应用效果,并对沉井设计提出改进建议.  相似文献   

4.
由于南京长江第四大桥北锚碇沉井基础支撑在分布不均匀的卵砾石层上,给沉井是否能够顺利下沉至设计标高带来诸多不确定因素,沉井不排水下沉后期下沉困难,开启了沉井井壁预先埋设的空气幕,助沉作用效果明显,主要介绍该沉井砂套结合空气幕助沉措施的设计、应用及作用效果等。  相似文献   

5.
南京长江第四大桥北锚碇沉井不排水下沉施工关键技术   总被引:1,自引:0,他引:1  
南京长江第四大桥北锚碇矩形沉井高52.8 m,共分11节,分4次接高下沉施工,其中第5~11节分3次采用不排水下沉施工,主要介绍北锚碇沉井不排水下沉施工所需设备配置、空气吸泥机吸泥工艺等关键技术。  相似文献   

6.
武汉鹦鹉洲长江大桥北锚碇新型沉井基础设计   总被引:1,自引:1,他引:0  
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础经多方案比选采用多圆孔环形截面新型沉井结构。沉井中间大圆孔内设置十字形隔墙,圆环内沿圆周均布有小直径井孔。沉井总高43 m,共分8节,第1节为钢壳混凝土沉井,第2~8节均为钢筋混凝土沉井。北锚碇施工中采用不排水下沉、井壁增加空气幕等措施减小施工难度及风险。采用软件FLAC3D对沉井施工过程进行数值模拟分析,评估施工安全性能、施工引起的环境效应及运营加载后锚碇基础的变形等。计算结果表明,沉井分节下沉施工过程中其结构、地面变形均满足规范要求,施工可有效避免对周围建筑物和长江大堤的不利影响。  相似文献   

7.
五峰山长江特大桥桥北锚碇采用重力式沉井基础。锚碇区地质土层松软,地基承载力差,为保证地基承载力满足沉井拼装及接高浇筑要求,避免沉井下沉初期出现突沉现象,采用吹填砂施工、砂桩挤密加固、换填砂垫层及铺设素混凝土垫块等方法对地基进行加固。通过多种地基处理工艺相结合,至钢壳沉井隔舱混凝土浇筑完成,沉井累计均匀下沉101mm,地基承载力满足设计和施工需要。  相似文献   

8.
《公路》2015,(6)
南京长江第四大桥北锚碇基础为世界最大规模的陆地桥梁沉井,沉井濒临长江大堤,地质条件极为复杂,沉井基础底部支撑在层厚很薄的圆砾石层上。沉井下况后期,须穿过较厚的密实砂层,地基承载力较大,最终沉井支撑在密实的圆砾石层,仅靠自重下沉困难,施工存在诸多技术难题,通过总结北锚碇沉井施工关键技术,以期为后续类似工程提供借鉴作用。  相似文献   

9.
马鞍山长江公路大桥北锚碇基础沉井施工中,通过有效的科学研究及现场落实,利用换填层换填形状及工艺的改进,提高了换填基础的整体强度;利用合理的钢壳拼装顺序保证了大体积沉井的现场制作精度;利用降排水下沉、不排水下沉的有效组合保证了沉井的快速下沉;利用下沉定位、纠偏技术和监控技术解决了下沉过程中的精度问题;利用空气幕助沉工艺解决了终沉阶段下沉困难的问题;利用首次对分区隔墙封底技术保证了沉井基础的顺利封底;利用分组施工技术解决了填芯施工进度慢的问题;现将这些经验总结出来,供今后类似工程参考。  相似文献   

10.
为了解特大圆形锚碇沉井下沉施工中下沉系数和稳定系数变化规律,以武汉鹦鹉洲长江大桥北锚碇高43m、外径66m的沉井基础为背景,运用太沙基理论对3次接高与3次下沉的不排水沉井施工方案各工况进行稳定性验算。结果表明:在前2次沉井下沉过程中,其下沉系数较大,下沉较容易;第3次下沉过程中,其下沉系数减小,下沉较困难,须采取相应助沉措施。沉井的正面阻力和侧摩阻力在各下沉工况下均随着沉井的下沉深度呈线性增加,且正面阻力在沉井节段接高稳定工况下增幅达到最大,在刃脚踏面支承工况下增幅最小,稳定性均满足要求。  相似文献   

11.
沈斌 《公路交通科技》2008,25(4):108-112
润扬长江公路大桥南汊悬索桥北锚碇基坑工程,在初步设计阶段,结合科研,针对冻结壁围护结构、沉井、地连墙围护结构的设计方案,进行了施工风险分析和对策研究(特别是冻结法方案)。针对冻结法方案大直径结构冷量损失大、冻结壁均匀性要求高、基底突水、停电等风险,提出了三排冻结管布置、冻结壁保护、基底注浆、双回路供电、钢筋混凝土内衬等对策;针对沉井下沉控制困难、地表沉降及井底流砂等风险,提出了空气幕或触变泥浆助沉、控制降水等对策;针对地连墙成槽风险,提出了液压铣槽机成槽等对策。最终将地连墙围护结构方案用于工程实践,实现了润扬大桥北锚基坑施工的万无一失。  相似文献   

12.
马鞍山长江公路大桥南锚碇沉井下沉采取“3次接高,3次下沉”的方案.为保证该方案的施工安全,对沉井下沉可行性指标进行验算,并对沉井首次接高期间的沉降量进行预估.计算结果表明,该方案能够满足沉井下沉初期结构本身的安全,保证首次接高期间的沉降量尤其是不均匀沉降量在允许的范围内.南锚碇沉井下沉时,土体采用分区对称的开挖方式,当沉井下沉至标高-34 m左右时启动空气幕助沉,通过对沉井降排水下沉和不排水下沉的过程进行实时监控和分析,有效地确保了该沉井下沉的安全、平稳.  相似文献   

13.
泰州长江公路大桥南锚基础沉降计算研究   总被引:2,自引:1,他引:1  
泰州长江公路大桥为三塔两跨悬索桥,两岸锚碇采用沉井基础。采用工程类比法和有限元法,分别在设计和施工阶段预测该桥南锚基础的沉降值。工程类比法以已经建成的江阴长江大桥北锚为原型,基于弹性理论类比出待建的泰州长江公路大桥南锚的沉降量,施工期沉降观测值表明,实际沉降值约为类比值的60%,类比值仅能供初步设计参考。有限元法则根据锚碇浇注过程中的实测沉降反演出力学参数,然后预测施工后期即架缆和桥面铺装阶段锚拉点的位移,计算结果表明,运用反演后的参数可以较准确地描述不同施工阶段沉井的变形特征,并指导后期施工。  相似文献   

14.
为解决泰州长江公路大桥在复杂条件下深水沉井定位难、摆动大等难题,以该桥中塔沉井为例,采用河工模型试验、CFD方法分析沉井着床阶段的河床冲刷形态和沉井摆动,同时研究终沉阶段下沉系数和沉井施工监控系统.根据分析研究结果,沉井定位采用“钢锚墩+锚系”的半刚性定位系统;采用“小锅底”取土方式下沉;采用信息化实时监控系统实时监测沉井空间几何姿态,确保了沉井准确定位与平稳下沉,最终将其平面误差控制在30 cm以内,垂直度误差为1/363.  相似文献   

15.
福安赛岐大桥跨近海河流,水文地质条件复杂,采用了钻孔桩、沉井、沉井套钻孔桩等基础形式,本文分析了该桥的深水基础的设计与施工技术。  相似文献   

16.
为解决城市核心区停车问题,提出井筒式地下车库自下沉沉井建造技术,充分挖潜利用地下空间资源建设地下立体停车库。该技术采用“装配式+自下沉沉井”技术施工,将装配式建筑的特点和自下沉沉井工艺相结合; 采用工厂标准化生产预制片,质量可靠; 现场拼装,减少混凝土浇筑施工量,有效节约工期。整个沉井施工过程无放坡、占地小、无需大型设备、施工速度快、安全性高、噪音小,对周边建筑和管线影响小。该技术已在工程实践中得以应用。  相似文献   

17.
介绍了泰州长江大桥南锚碇沉井基础的施工特点和下沉阻力现场监测技术。在下沉过程中,采用土压力计监测了每节沉井的侧壁土压力和沉井的刃脚土压力。通过这些监测数据的整理和规律分析,既控制了沉井的安全平稳的下沉,也为同类型的大型沉井的设计和施工提供了可以参考的依据。  相似文献   

18.
沉井是修建深基础、地下构筑物所广泛应用的施工方法之一。该文通过对某污水处理厂粗格栅及进水泵房T形沉井(构筑物)基础的下沉施工设计计算、施工实践,解决了T形沉井制作及不排水法下沉施工中的稳定性问题。  相似文献   

19.
董晓朋 《路基工程》2018,(1):108-114
沪通长江大桥为公铁两用斜拉桥,其中29号主墩采用倒圆角的矩形沉井基础,结合现场施工,在钢壳沉井的不同截面上安装土压力盒和钢板应变计等监测元件,对沉井侧壁和隔墙不同位置的受力进行监测。结果表明:在大锅底开挖情况下,沉井受力类似深梁构件,两侧受压中间受拉,且中间隔墙的拉应力会随着沉井的不断接高而逐渐减小,最后变为压应力;沉井在施工中倾斜时,同一断面对称位置的受力有很大区别,且在沉井姿态稍有变化时,同一位置的受力也会发生突变,故应尽量保证沉井的姿态垂直;沉井在吸泥下沉过程中,会发生翻砂、突沉的情况,对沉井的受力会有很大的影响,这些影响可在钢板应变计的监测上有所体现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号