首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lane-changing events are often related with safety concern and traffic operational efficiency due to complex interactions with neighboring vehicles. In particular, lane changes in stop-and-go traffic conditions are of keen interest because these events lead to higher risk of crash occurrence caused by more frequent and abrupt vehicle acceleration and deceleration. From these perspectives, in-depth understanding of lane changes would be of keen interest in developing in-vehicle driving assistance systems. The purpose of this study is to analyze vehicle interactions using vehicle trajectories and to identify factors affecting lane changes with stop-and-go traffic conditions. This study used vehicle trajectory data obtained from a segment of the US-101 freeway in Southern California, as a part of the Next Generation Simulation (NGSIM) project. Vehicle trajectories were divided into two groups; with stop-and-go and without stop-and-go traffic conditions. Binary logistic regression (BLR), a well-known technique for dealing with the binary choice condition, was adopted to establish lane-changing decision models. Regarding lane changes without stop-and-go traffic conditions, it was identified based on the odd ratio investigation that he subject vehicle driver is more likely to pay attention to the movement of vehicles ahead, regardless of vehicle positions such as current and target lanes. On the other hand, the subject vehicle driver in stop-and-go traffic conditions is more likely to be affected by vehicles traveling on the target lane when deciding lane changes. The two BLR models are adequate for lane-changing decisions in normal and stop-and-go traffic conditions with about 80 % accuracy. A possible reason for this finding is that the subject vehicle driver has a tendency to pay greater attention to avoiding sideswipe or rear-end collision with vehicles on the target lane. These findings are expected to be used for better understanding of driver’s lane changing behavior associated with congested stop-and-go traffic conditions, and give valuable insights in developing algorithms to process sensor data in designing safer lateral maneuvering assistance systems, which include, for example, blind spot detection systems (BSDS) and lane keeping assistance systems (LKAS).  相似文献   

2.
A country can adopt one of two standards for traffic flow — cars may travel on the left or right side of the road. When drivers who are accustomed to driving on the right side of the road drive on the left side, and vice versa, the mental workload is likely increased due to the driver’s unfamiliarity with a new language, the position of the driver’s seat, different driving directions, and other factors that differ from those of their home country. One method of doing this is to make sure that the in-vehicle route guidance information (RGI) is not overly complicated — thereby assisting drivers in improving their safety. Consequently, the aim of this study was to facilitate mobility and improve safety for natural right-side drivers driving temporarily in left-side traffic. In this study, driver behavior and workload — given various types of RGI — were evaluated in a driving simulator with a variety of prescribable test conditions. This research was composed of two experiments. In the first, various types of in-vehicle route guidance systems were tested and evaluated in terms of their characteristics and associated driver behaviors (while driving). In the second experiment, systemic factors and effectiveness were evaluated by two combined systems, arrow and map-type information, based on the results of the first experiment. In light of both experiments, the various types of route guidance systems were discussed in terms of their results. A navigation system was proposed to alleviate some of the secondary tasks such as route selection.  相似文献   

3.
Nowadays, a number of environmental issues have seriously come to the fore. For this reason, the R & D spending on eco-friendly vehicles that use electric power has been gradually increasing. In general, fuel economy and pollutant emissions of both conventional and eco-friendly vehicles are measured through chassis dynamometer tests that are performed on a variety of driving cycles before an actual driving test. There are a number of driving cycles that have been developed for the for performance evaluation of conventional vehicles. However, there is a lack of research into driving cycle for EV. Because large differences exist between the drive system and driving charateristics of EV and that of CV, a study on driving cycle for EV should be conducted. In this study, the necessity of an urban driving cycle for the performance evaluation of electric vehicles is confirmed by developing the driving cycle. First, the Gwacheon-city Urban Driving Cycle for Electric Vehicles (GUDC-EV) is developed by using driving data obtained through actual driving experiments and statistical analysis. Second, GUDC-EV is verified by constructing EV simulators and performing simulations that use the actual driving data. The simulation results are then compared against existing urban driving cycles, such as FTP-72, NEDC, and Japan 10–15. These results confirm that GUDC-EV can be used as an urban driving cycle to evaluate the performance of electric vehicles and validate the necessity of development of the driving cycle for electric vehicles.  相似文献   

4.
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.  相似文献   

5.
混凝土搅拌输送车的设计计算中,混凝土的几何形状复杂,拌筒阻力矩的计算困难,从而影响了驱动功率的计算与确定.针对上述问题列举、比较了国内两种搅拌阻力矩的算法,同时根据实验数据,进行曲线拟合,得出了驱动阻力矩的简便计算公式,进而计算驱动功率.  相似文献   

6.
为了研究车辆冷起动、行程动力学参数和不同数据处理方法对实际行驶排放(RDE)试验的影响,本文利用4辆轻型汽油车进行试验研究,通过CO2移动平均窗口法和欧6新方法进行排放计算。结果表明:冷起动对CO和NOx排放影响偏差均在10%以内,对于未装配汽油机颗粒捕集器(GPF)车辆的市区PN排放影响偏差最大可达32.25%,在国6车型标定时应重点关注。相对正向加速度(RPA)与PN排放成正相关,与CO、NOx排放相关性不明显;v*apos,95(速度与正向加速度乘积按升序排序的第95个百分位取值)与CO、PN排放成正相关,与NOx排放成负相关,与CO和PN的相关系数大于与NOx的相关系数。对于同一个有效行程的污染物排放计算结果,欧6新方法大于CO2移动平均窗口法,欧6新方法能更加真实地反映车辆在RDE试验中的污染物排放水平。  相似文献   

7.
8.
在山路和平路上,进行了不同载荷下国V柴油车的实际道路行驶排放(RDE)试验.采集车速、海拔、氮氧化物(Nox)和颗粒物数量(PN)排放浓度等数据,分析了道路坡度、车辆载荷与输出功率对排放的影响.研究发现:测试柴油车辆,在平均坡度约6%山路行驶时Nox排放因子高于平路20%以上,PN低于平路20%以上.道路坡度自0增大到...  相似文献   

9.
随着国际战争多元化发展,水陆两栖车已经逐渐在陆军装备中扮演重要角色。目前国内外两栖车水上推进装置导管桨的驱动形式一般为机械或液压。本文介绍的导管桨驱动方案为两个闭式液压系统分别驱动两个导管桨。  相似文献   

10.
This paper presents a methodological approach for determination of the most effective driving features for hybrid electric vehicle intelligent control, using the driving segment simulation. In this approach, driving data gathering is first performed in real traffic conditions using Advanced Vehicle Locator systems. The vehicle's speed time series are then divided into small segments. Subsequently, 19 driving features are defined for each driving segment, and the influence of the driving features on the vehicle's fuel consumption (FC) and exhaust emissions is investigated, using driving the driving segment simulation. The simulation approach is also verified by experimental test. Finally, the driving features are ranked by a new approach based on the definition of an effectiveness index and a correlation analysis. The results demonstrate that the velocity-dependent driving features such as ‘energy’, ‘mean of velocity’, ‘displacement’ and ‘maximum velocity’ are more effective on vehicle's FC and exhaust emissions. However, because of high dependency between these features, this study suggests independent driving features among the most effective driving features.  相似文献   

11.
《JSAE Review》1999,20(3):381-386
At intersections with good visibility, such as those located in rice fields, relatively many fatal accidents involving elderly drivers happen in Japan. In the present study, the causative factor of these accidents was examined from the viewpoint of visual search performance. It was shown that a vehicle that is not on collision course can be easily detected by peripheral vision. No age related deterioration of the detection performance in the peripheral visual field was found. However, the detection of a vehicle on collision course in the peripheral visual field was more difficult for elderly drivers. No age difference in detection performance was found when drivers were allowed to actively search the road scene by central vision. It can be concluded that active checking of the periphery at intersections with good visibility is more important for elderly drivers than for young drivers.  相似文献   

12.
The new vehicle platforms for electric vehicles (EVs) that are becoming available are characterised by actuator redundancy, which makes it possible to jointly optimise different aspects of the vehicle motion. To do this, high-level control objectives are first specified and solved with appropriate control strategies. Then, the resulting virtual control action must be translated into actual actuator commands by a control allocation layer that takes care of computing the forces to be applied at the wheels. This step, in general, is quite demanding as far as computational complexity is considered. In this work, a safety-oriented approach to this problem is proposed. Specifically, a four-wheel steer EV with four in-wheel motors is considered, and the high-level motion controller is designed within a sliding mode framework with conditional integrators. For distributing the forces among the tyres, two control allocation approaches are investigated. The first, based on the extension of the cascading generalised inverse method, is computationally efficient but shows some limitations in dealing with unfeasible force values. To solve the problem, a second allocation algorithm is proposed, which relies on the linearisation of the tyre–road friction constraints. Extensive tests, carried out in the CarSim simulation environment, demonstrate the effectiveness of the proposed approach.  相似文献   

13.
《JSAE Review》1996,17(2):151-157
This study describes new viewpoints for the evaluation of human interfaces of in-vehicle information systems. Firstly, by using quantitative analysis, the drivers' characteristics were compared and investigated in the cases of using a navigation system and a paper map. The results show that it is difficult to clarify what caused the difference of drivers' behavior. A new framework which includes methods based on cognitive science was introduced and the drivers' behavior was investigated using the framework. The results indicate that it is important to investigate the driver's cognitive process and that this framework is effective for evaluation of the human interface.  相似文献   

14.
为了填补大中型农机难以进入山区田地的缺陷,微型农机的设计研究是非常必要的,微型农机具有节约能源资源,促进农业增产,降低农民的劳动强度提高农业生产的效率的特点,目前自行走微耕机多采用履带式行走机构,该行走机构绝大多数采用整体式橡胶履带,由驱动轮带动橡胶履带板,从而实现整机得移动,前进后退及差速转弯。  相似文献   

15.
The estimation of the overspeed risk before the accident is among the main goals of this paper. The proposed method uses the Energy Equivalent Speed (EES) to assess the severity of an eventual accident. However, the driver behavior evaluation should take into account the parameters related to the Driver, the Vehicle and the Environment (DVE) system. For this purpose, this paper considers a two-level strategy to predict the global risk of an event using the Dempster-Shafer Theory (DST) and the Fuzzy Theory (FT). This paper presents two methods to develop the Expert Model-based Basic Probability Assignment (EM based BPA), which is the most important task in the DST. The first one is based on the accident statistics and the second method deals with the relationship between the Fuzzy and Belief measurements. The experimental data is collected by one driver using our test vehicle and a Micro-intelligent Black Box (Micro-iBB) to collect the driving data. The sensitivity of the developed models is analysed. Our main evaluation concerns the Usage Based Insurance (UBI) applications based on the driving behavior. So, the obtained masses over the defined referential subsets in the DST are used as a score to compute the driver’s insurance premium.  相似文献   

16.
电控系统执行器模拟驱动装置在国外较先进的汽车电控系统检测仪中已经运用,但其价格昂贵,在国内尚未使用。一种结构简单、价格低廉的模拟驱动系统采用软硬件结合的方法,选用8031单片机,并对其进行系统扩展,以完成对汽车主要执行器工作情况检测,其成果可以满足汽车维修的需要。  相似文献   

17.
为了设计无级变速汽车自动驾驶模拟器的模糊控制器,建立了简化的无级变速汽车驾驶模拟器模型。通过仿真分析了模糊控制器的隶属函数形状和解模糊算法等对控制器性能的影响,提出了适合于车辆在复杂运行工况下的模糊控制策略,为无级变速汽车传动系统的模糊控制器的设计提供了理论依据。  相似文献   

18.
《JSAE Review》1999,20(3):331-336
In order to develop a proper speed control technique for automated driving of heavy-duty vehicles, in the situation of mixed traffic of heavy-duty vehicles and passengers cars, a simulation study is carried out considering the transient characteristics of heavy-duty vehicles in acceleration and deceleration. The control performance is observed and some problems to be solved are listed as follows: (1) to check control performance for time-dependent target speed and distance (2) to improve the control algorithms to suppress chattering of the acceleration.  相似文献   

19.
This article sets out an optimum synthesis methodology for wheel profiles of railway vehicles in order to secure good dynamic behaviour with different track configurations. Specifically, the optimisation process has been applied to the case of rail wheelsets mounted on double-gauge bogies that move over two different gauges, which also have different types of rail: the Iberian gauge (1668 mm) and the International Union of Railways (UIC) gauge (1435 mm). Optimisation is performed using Genetic Algorithms and traditional optimisation methods in a complementary way. The objective function used is based on an ideal equivalent conicity curve which ensures good stability on straight sections and also proper negotiation of curves. To this end, the curve is constructed in such a way that it is constant with a low value for small lateral wheelset displacements (with regard to stability), and increases as the displacements increase (to facilitate negotiation of curved sections). Using this kind of ideal conicity curve also enables a wheel profile to be secured where the contact points have a larger distribution over the active contact areas, making wear more homogeneous and reducing stresses. The result is a wheel profile with a conicity that is closer to the target conicity for both gauges studied, producing better curve negotiation while maintaining good stability on straight sections of track. The article shows the resultant wheel profile, the contact curves it produces, and a number of dynamic analyses demonstrating better dynamic behaviour of the synthesised wheel on curved sections with respect to the original wheel.  相似文献   

20.
An important aspect from the perspective of operational safety of heavy road vehicles is the detection and avoidance of collisions, particularly at high speeds. The development of a collision avoidance system is the overall focus of the research presented in this paper. The collision avoidance algorithm was developed using a sliding mode controller (SMC) and compared to one developed using linear full state feedback in terms of performance and controller effort. Important dynamic characteristics such as load transfer during braking, tyre-road interaction, dynamic brake force distribution and pneumatic brake system response were considered. The effect of aerodynamic drag on the controller performance was also studied. The developed control algorithms have been implemented on a Hardware-in-Loop experimental set-up equipped with the vehicle dynamic simulation software, IPG/TruckMaker®. The evaluation has been performed for realistic traffic scenarios with different loading and road conditions. The Hardware-in-Loop experimental results showed that the SMC and full state feedback controller were able to prevent the collision. However, when the discrepancies in the form of parametric variations were included, the SMC provided better results in terms of reduced stopping distance and lower controller effort compared to the full state feedback controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号