首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《公路》2017,(9)
某大跨悬索桥的索塔采用沉井基础,因其体积大、施工水域深,着床定位时采取了导向墩定位的施工方法,同时采用GPS RTK技术对沉井下沉施工进行实时监测,并通过软件实时解算出沉井的空间几何姿态。该技术受天气等外界环境因素影响小,为沉井顺利施工提供了有力保障,有利于缩短工期,节省成本,可为类似工程提供借鉴。  相似文献   

2.
《上海公路》2013,(3):I0003-I0004
近日,浙江省交通设计院申请的“一种沉井和钢管桩的水中组合基础的施工方法”取得了发明专利证书。本发明属于土建工程建造技术领域,具体涉及一种适用于具有深厚覆盖层的沉井和钢管桩的水中组合基础及其施工方法。本发明包括:(1)打入钢管桩,利用钢桁架将钢管桩连成整体;在钢桁架上设置千斤顶。(2)将沉井的底节的钢壳浮运到钢管桩外侧,组装成整体,通过吊杆与千斤顶固定连接;浇筑沉井混凝土。(3)利用千斤顶控制沉井下沉;下沉到设计标高后拆除钢桁架,利用沉井做工作平台,振动下沉钢管桩至预制高度。(4)浇筑沉井封底混凝土;架设沉井顶板并对沉井底部土层进行加固。  相似文献   

3.
沉井是修建深基础、地下构筑物所广泛应用的施工方法之一。该文通过对某污水处理厂粗格栅及进水泵房T形沉井(构筑物)基础的下沉施工设计计算、施工实践,解决了T形沉井制作及不排水法下沉施工中的稳定性问题。  相似文献   

4.
现在市政公共工程的给水排水工程的城市雨污水泵站,雨污水管道的工作井、接收井等结构多采用沉井基础。沉井基础施工时占地面积小,坑壁不需设临时支撑和防水围堰,操作简便,无需特殊的专业设备。沉井施工时,相关参考书要求计算下沉系数,而实际下沉系数与沉井的下沉关系有时并不明显。对沉井下沉系数在沉井下沉时的作用进行了一些探讨,有关经验可供相关专业人员参考。  相似文献   

5.
马鞍山长江大桥南锚碇采用沉井基础,沉井入土深度超过50m,其施工采用“3次接高,3次下沉”的工艺:第1次下沉采用降排水措施,第2次下沉采用半排水措施,第3次下沉采用不排水措施。在沉井第3次下沉过程中,开启空气幕助沉,显著加快了下沉速度。沉井下沉期间,采用综合监控手段,保证了沉井顺利、精确下沉。实践证明,该桥所采用的沉井下沉方案科学合理,下沉到位后沉井几何姿态良好。  相似文献   

6.
武汉鹦鹉洲长江大桥北锚碇新型沉井基础设计   总被引:1,自引:1,他引:0  
武汉鹦鹉洲长江大桥主桥为三塔四跨悬索桥。该桥北锚碇基础经多方案比选采用多圆孔环形截面新型沉井结构。沉井中间大圆孔内设置十字形隔墙,圆环内沿圆周均布有小直径井孔。沉井总高43 m,共分8节,第1节为钢壳混凝土沉井,第2~8节均为钢筋混凝土沉井。北锚碇施工中采用不排水下沉、井壁增加空气幕等措施减小施工难度及风险。采用软件FLAC3D对沉井施工过程进行数值模拟分析,评估施工安全性能、施工引起的环境效应及运营加载后锚碇基础的变形等。计算结果表明,沉井分节下沉施工过程中其结构、地面变形均满足规范要求,施工可有效避免对周围建筑物和长江大堤的不利影响。  相似文献   

7.
沉井下沉技术在泰州长江公路大桥北锚碇中的应用   总被引:4,自引:0,他引:4  
针对沉井施工的特点.介绍了泰州长江公路大桥北锚碇大型沉井下沉过程中所采用的下沉技术和主要施工要点及其应用效果,并对沉井设计提出改进建议.  相似文献   

8.
武汉鹦鹉洲长江大桥为三塔四跨钢-混结合梁悬索桥,桥跨布置为(200+2×850+200)m。该桥北锚碇基础为"带孔圆环+十字撑"结构沉井,圆环内沿圆周均布16个直径8.7m的井孔。为降低沉井施工对周围房屋、长江大堤的安全影响,沉井施工前在其外围10m处设置地下连续墙结构进行防护。沉井共分8节,采取在底节上接高第二节后下沉9m,再接高3节下沉14m,最后接高3节下沉22m的"3次接高3次下沉"施工方案。为防止出现翻砂事故,采取沉井内侧环向均匀取土、中间缓吸反压的技术措施,采用5孔单孔直径1mm的空气幕气龛助沉。在沉井即将到达设计标高时,在沉井内侧沿沉井壁吸泥形成环形沟槽、开动空气幕实现沉井精确就位。采取长距离管道水力排渣施工方法,有效避免对城市环保和路面交通的影响。  相似文献   

9.
沉井基础在大型桥梁主墩、锚碇基础中得到广泛应用,并在沉井工程勘察、工程设计与施工技术方面取得了一定的进展。在工程勘察技术发展方面,地质参数获取方法在现有理论分析法、室内试验法、现场试验法的基础上进一步发展了现场载荷板试验法,研制了侧摩阻力监测装置,对地基承载力、侧摩阻力等地质参数认识不断加深。在工程设计技术发展方面,通过对平面形式与尺寸、结构安全、软弱地基砂桩加固等方面不断进行优化设计,形成了适用于大型沉井的结构与地基处理的设计方法。在沉井施工技术发展方面,针对沉井浮运定位与着床,提出了井孔封闭助浮、多阶段多方式长距离浮运技术,以及液压千斤顶多向快速定位着床技术,研发了锚系定位系统;针对锅底开挖下沉的不足,提出了全节点支撑、中心块状支撑等新型开挖下沉工艺;针对高压射水结合泥浆泵设备取土的不足,研制了四绞刀快速破取土设备、可自移动式快速取土设备、机械臂水下定点取土机器人等新型设备;针对人工监测的不足,采用信息化监测系统进行沉井施工监测,形成了自动监测-风险预警-辅助决策控制-设备自动化执行的智能化监测控制技术;在沉井工业化建造技术方面进行了有益探索,将取土平台与供气管、供水管、排泥管、施...  相似文献   

10.
针对沉井基础后期下沉系数小、下沉效率低的问题,采用真空负压下沉技术进行工艺试验,验证沉井基础在砂质土中采用抽砂和抽气相结合的方法,能否顺利实现负压下沉.试验对象为马鞍山长江公路大桥的1个根式沉井,沉井外径6.0 m、壁厚0.8 m、高38.0 m.试验结果表明,在砂质土中,负压技术能降低下沉阻力,提高下沉效率.  相似文献   

11.
马鞍山长江公路大桥南锚碇沉井下沉采取“3次接高,3次下沉”的方案.为保证该方案的施工安全,对沉井下沉可行性指标进行验算,并对沉井首次接高期间的沉降量进行预估.计算结果表明,该方案能够满足沉井下沉初期结构本身的安全,保证首次接高期间的沉降量尤其是不均匀沉降量在允许的范围内.南锚碇沉井下沉时,土体采用分区对称的开挖方式,当沉井下沉至标高-34 m左右时启动空气幕助沉,通过对沉井降排水下沉和不排水下沉的过程进行实时监控和分析,有效地确保了该沉井下沉的安全、平稳.  相似文献   

12.
以温州市鹿城区七都岛—铁塔公园段跨瓯江电力隧道工程七都岛侧沉井基础为研究对象,对沉井在软土地基中下沉进行监测研究,通过现场监测数据分析,对沉井侧摩阻力、刃脚底部压力、沉井外土面沉降进行分析,得出沉井在软土地基中的下沉特性,这对理论研究与实际工程设计都有参考意义。现场监测数据结果表明:在软土地基中沉井侧摩阻力随着沉井入土深度的增加呈线性增加,到达一定峰值后缓慢降低;下沉过程中刃脚土压力的波动较为剧烈,其中刃脚斜面阻力占同一深度踏面阻力的10%左右;沉井下沉对周边土体沉降的影响范围比沉井在其他土体中小10%左右,为沉井下沉深度的10%左右。  相似文献   

13.
官厅水库特大桥为主跨720m的单跨悬索桥。大桥南岸锚碇基础为33m高全钢筋混凝土沉井结构,标准平面尺寸为56m×50m。沉井中心距离京包铁路线仅60m,墩位处地质结构主要为粉质黏土和圆砾土。为对既有铁路线进行防护,采用单排钻孔灌注桩作为防护桩,在沉井施工之前完成防护桩的施工。沉井接高之前直接在地面根据沉井刃脚仿形开挖沟槽,沉井底节采用土模法在沟槽内安装模板和绑扎钢筋进行接高,底节完成后沉井采用翻模法正常接高,单次接高3m,接高到15m后开始第1次下沉施工。沉井共分2次下沉施工,进入地下水5m前采用干挖取土下沉,之后采用水下吸泥取土下沉。下沉施工采用潜水泵水下高压射水辅助吸泥,空气幕实施助沉。施工过程快速、平稳有序,确保了铁路路基的稳定,沉井按设计要求下沉到位。  相似文献   

14.
五峰山长江特大桥主桥为主跨1 092m的钢桁梁公铁两用悬索桥,北锚碇采用100.7m×72.1m×56m的沉井基础。该沉井首节采用钢壳混凝土结构、其余9节采用钢筋混凝土结构,采用"三次接高、三次下沉"的方案施工。为及时掌握沉井下沉施工过程中的几何姿态及受力情况,建立实时在线监测系统,对沉井几何姿态、沉井结构应力及沉井刃脚土压力进行自动化监测,基于监测数据及时进行沉井下沉控制。结果表明:下沉过程中沉井测点高差和倾斜度均在限值内,沉井挠度基本在20mm限值内,沉井几何姿态较好;沉井混凝土及钢结构测点的实测应力基本在限值范围内,沉井刃脚各测点的土压力均控制在1.20MPa限值内,沉井结构受力良好。  相似文献   

15.
一种深水组合基础的设计研究   总被引:1,自引:0,他引:1  
为了解决跨海大桥常见的水深、软基、基础沉降量大等难题,以规划中的琼洲海峡大桥中线桥为背景,研究分离的四柱式沉井+桩基的组合基础形式。该组合基础中的四柱式沉井上下设2道系梁(采用2个"一"字形或倒扣的"U"字形);在沉井壁内打入桩。沉井与桩基础共同承受竖向力,减少了桩基数量;沉井基础可作为桩基础的施工平台,解决了海上施工平台难以搭建的难题;同时桩基础有利于减少基础沉降。桩基和沉井所受竖向力按其与承台的竖向接触刚度来分配,桩身受力按低桩承台假定进行受力分析,分析结果表明桩身强度完全满足受力要求。该组合基础的下沉施工顺序和自浮式沉井的下沉施工顺序基本相同。  相似文献   

16.
王宏翔  李维生 《公路》2021,66(12):193-198
在超大型沉井施工过程中,由于沉井体积较大,重量大,下沉深度深,受地层地质、地下水、周边结构物等影响,在不同下沉阶段,其下沉方式不同。在大型桥梁陆地沉井下沉前期采用降排水下沉,中后期采用不排水下沉,不同地层,取土方式不同,对四周地面、结构物等影响非常大。比如在粉土、粉质黏土、粉砂、粉细砂和圆砾等地质中容易出现取土不均匀,取土不当引起内外压力差过大,产生涌砂等现象,造成沉井突沉,甚至沉井倾斜,沉井四周地面不同程度的沉陷。为了确保沉井施工质量和安全,顺利下沉到位,依托南京仙新路过江通道北锚碇沉井的不排水下沉关键技术进行讨论研究。  相似文献   

17.
徐智 《公路》1996,(7):25-28
在长东黄河大桥沉井基础施工中,采用了空气幕辅助沉进下沉。在加快沉井施工进度和提高工程质量方面取得了显著效果,由于空气幕减小了井壁与土壤之间的摩阻力使沉井下沉容易,也可利用空气幕不同区段送风使沉井顺利纠偏。  相似文献   

18.
船闸基地锚泊区采用沉井式结构作为基础,主要是由于受周边环境影响,施工场地狭隘,同时地基承载力较弱.沉井施工能较好地适应上述问题,从施工结果来看达到了预期的效果.同时,沉井施工对缩短工期起到了一定的作用.文中介绍了施桥三线船闸工程土建标船闸基地锚泊区沉井的制作、下沉及下沉过程中施工技术控制.  相似文献   

19.
马鞍山长江公路大桥北锚碇沉井基础施工中,沉井不排水下沉终沉阶段采用空气幕辅助下沉.该沉井采用3次接高、3次下沉的工艺,在第2节沉井接高时,在其井壁外侧布置竖向风管、水平风管和气龛,并在后续沉井接高中将竖向风管相应接长.终沉阶段向风管内通人压缩气体,气体从气龛孔喷出后使井壁与土壤之间的侧摩阻力减小,从而达到促使沉井快速下沉的目的.沉井下沉中应用空气幕对加快沉井施工进度、提高工程质量、降低工程造价方面有显著成效.  相似文献   

20.
南京长江第四大桥北锚碇采用沉井基础,沉井尺寸为69.0 m×58.0 m×52.8 m,置于密实卵砾石层,工程地质条件复杂.沉井共分11节,第1节为钢壳混凝土沉井,其余均为钢筋混凝土沉井.采用打设砂桩和换填砂土复合地基加固法加固地基.在加固地基上现场拼装钢壳沉井节段,浇注第1节沉井混凝土.11节沉井分4次接高下沉,首次下沉采取水力吸泥机取土、降排水下沉,其余3次下沉采取空气吸泥机取土、不排水下沉.沉井下沉就位后按照4个分区的顺序逐区进行封底混凝土施工.施工监测表明,沉井下沉姿态、偏差均控制在规范标准之内.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号