首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
为准确对接SBS改性沥青混合料施工时的老化程度,依托山西高平至沁源高速公路建设项目,探索了适用于SBS改性沥青混合料室内模拟短期老化温度和时间。试验结果表明,采用150℃,4 h老化条件对SBS改性沥青混合料进行短期老化,可有效模拟其在实际施工中的短期老化;SBS改性沥青混合料经过短期老化后,动稳定度明显升高,老化温度越高,动稳定度越大;随着老化时间延长,改性沥青混合料的弯拉强度逐渐增加,温度越高,弯拉强度越高,弯拉应变逐渐减小;冻融劈裂强度比随着老化温度升高与老化时间延长而减小。  相似文献   

2.
SBS改性混合料施工温度明显高于普通沥青混合料,为了探究短期老化试验条件对SBS改性沥青混合料路用性能的影响,通过烘箱老化方法在135℃、150℃、165℃温度下分别对SBS改性沥青混合料老化4 h、8 h、12 h后,进行沥青混合料路用性能试验对比研究分析。结果表明,老化试验温度设定在150℃、165℃温度更加适宜SBS改性沥青混合料;与弯拉强度和弯拉应变,劲度模量更适宜SBS改性沥青老化后低温性能的评价;残留稳定度比难以区分SBS改性沥青混合料老化水稳定性的优劣,但可以用冻融劈裂比评价SBS改性沥青混合料老化后的水稳定性。  相似文献   

3.
SEAM改性沥青及其混合料路用性能研究   总被引:1,自引:0,他引:1  
通过对SEAM改性沥青及其混合料进行一系列室内试验研究,包括不同掺量的SEAM改性沥青的技术性能试验及不同SEAM与沥青比例条件下的混合料车辙试验、低温和常温劈裂试验、冻融劈裂试验以及磨耗飞散试验,得出的试验结果表明:在超过一定掺量条件下,SEAM能改善沥青及混合料的高温性能,但对其低温性能和水稳定性改变不明显,说明SEAM沥青混合料的抗车辙能力强,是高温稳定性好的沥青路面材料。  相似文献   

4.
SEAM沥青混合料性能及其改性机理研究   总被引:2,自引:0,他引:2  
测试了SEAM沥青混合料的马歇尔性能指标、高、低温稳定性、水稳定性和疲劳性能。试验结果表明,在掺量大于10%的条件下,SEAM沥青混合料具有较好的抗车辙性能和抗疲劳性能,提高沥青混合料的动稳定度达171%,提高疲劳寿命187%,低温性能与基质沥青混合料相近。应用红外光谱分析研究硫磺改性沥青的机理。红外光谱分析结果表明:当SEAM掺量达到20%和30%时,沥青与硫磺发生充分作用,在沥青中形成氢键和S-H化学键,亚硫酸酯、硫酸酯和砜一类的物质。硫磺改性沥青的机理是硫磺改变了沥青分子间的连接和成分。  相似文献   

5.
SEAM沥青混合料是一种新型的筑路材料,可以有效地解决高等级公路中出现的许多病害。通过总结SEAM改性沥青混合料配合比设计和施工工艺,表明SEAM改性沥青混合料具有较好的改性效果,值得推广应用。  相似文献   

6.
SEAM青混合料是一种新型的筑路材料,可以有效地解决高等级公路中出现的许多病害.通过总SEAM性沥青混合料配合比设计和施工工艺,表明SEAM改性沥青混合料具有较好的改性效果,值得推广应用.  相似文献   

7.
为推广固废橡胶在道路工程中的应用,制备了橡胶/SBS复合改性SMA-13沥青混合料,并以SBS改性沥青混合料作为参照,采用车辙试验、冻融劈裂试验及疲劳试验对比分析了两种混合料的路用性能及耐久性,结果表明:动稳定度与TSR基本一致;弯拉应变提高15%;疲劳寿命提高一倍;具有优良的综合路用性能。  相似文献   

8.
针对我国钢桥面浇注式沥青混合料用聚合物复合改性沥青、湖沥青复合改性沥青及硬质沥青改性沥青所存在的性能差异,对3种沥青结合料的基本性能以及其混合料的流动性、高温稳定性及疲劳耐久性等进行试验对比研究,全面分析其性能差异。实验结果表明:浇注式沥青混合料的性能与其结合料类型存在一致性。采用聚合物复合改性沥青成型的混合料综合性能具有明显优势:当温度达到70℃,该混合料静态贯入度较其它两种混合料低9.0%和28.4%;低温弯拉极限应变较湖沥青复合改性沥青、硬质沥青改性沥青混合料依次高出22.8%、60.2%;在600με控制条件下的四点弯曲疲劳次数,聚合物复合改性沥青超过100万次,湖沥青复合改性沥青约32.5万次,硬质沥青改性沥青在加载初期即出现破坏。  相似文献   

9.
以本溪沈环线北台段大修工程为实例,介绍SEAM改性沥青及其沥青混合料的技术性能,与我国北方常用的其他改性沥青进行了经济、技术比较,证明SEAM改性沥青具有一定的应用前景。  相似文献   

10.
SEAM改性沥青的化学改性机理分析   总被引:1,自引:0,他引:1  
SEAM是一种新型的沥青改性剂,同时也是一种沥青混合料添加剂,最近几年才引进我国并在天津进行首次应用,属于新材料、新工艺,因此有必要进行SEAM改性沥青的改性机理研究。通过一系列基准试验,比较分析了SEAM改性沥青的改性效果,结合相关化学理论知识,分析并总结了SEAM改性沥青的改性机理。  相似文献   

11.
对热拌和温拌沥青混合料的性能进行了对比研究,温拌沥青混合料的动稳定度大于热拌沥青混合料的动稳定度。温拌沥青混合料相比热拌沥青混合料,弯拉强度增加,劲度模量降低,破坏应变增加,具有较为良好的低温抗裂性能。温拌沥青混合料的水稳定性与热拌沥青混合料的水稳定性相当。  相似文献   

12.
陈明 《交通标准化》2009,(15):89-93
通过低温弯曲试验和低温冻断试验两种方法,对SEAM(硫磺)改性沥青混合料的低温抗裂性能进行试验研究,并与普通沥青混合料进行对比,结果表明,添加SEAM(硫磺)后,沥青混合料的低温抗裂性能并未降低。  相似文献   

13.
通过低温弯曲试验和低温冻断试验两种方法,对SEAM(硫磺)改性沥青混合料的低温抗裂性能进行试验研究,并与普通沥青混合料进行对比,结果表明,添加SEAM(硫磺)后,沥青混合料的低温抗裂性能并未降低.  相似文献   

14.
将复合纳米TiO_2应用于改性沥青,研究纳米改性沥青路用性能,制备沥青混合料分别进行车辙试验、小梁弯曲试验和浸水马歇尔试验。试验结果表明复合纳米TiO_2颗粒添加到沥青混合料中,车辙动稳定度比基质沥青混合料的提高了68.41%;低温弯曲试验抗弯拉强度和劲度模量与基质沥青相比差别不大,而最大弯拉应变明显高于基质沥青混合料;在浸水前后其稳定度值均高于基质沥青混合料,而且其残留稳定度也比基质沥青混合料提高了1.08倍。本文研究结果证明了复合纳米TiO_2颗粒应用于沥青改性技术中可以全面改善沥青混合料的使用性能,有良好的应用前景。  相似文献   

15.
王虎 《交通标准化》2008,(5):115-118
我国国土面积广阔,气候条件比较复杂,沥青的质量千差万别,特别是许多国产沥青含腊量较高,导致路面病害层出不穷,采用进口沥青、改性沥青价格又比较昂贵,而SEAM沥青混合料是通过在沥青混合料中掺入一定剂量的SEAM改性剂,从而节约沥青,提高混合料路用性能的一种新型、优质的道路材料。在当前可持续发展战略中,SEMA沥青混合料有着广阔的推广空间。  相似文献   

16.
采用MPE和SBS两种改性剂,对比研究了基质沥青、MPE改性沥青与花岗岩碎石的黏附性;分析了加抗剥落剂的基质沥青、加抗剥落剂的SBS改性沥青和MPE改性沥青与酸性花岗岩碎石混合料的路用性能。研究结果表明:MPE改性沥青和花岗岩碎石的黏附等级为5级;掺加MPE的AC-13沥青混合料,其动稳定度为60,70,80℃条件下分别超过6 000,5 000,2 000次/mm,马歇尔稳定度比基质沥青混合料提高35%,比掺加5%SBS的改性沥青混合料提高23%;浸水残留稳定度达到98%,比基质沥青混合料提高11%,比SBS改性沥青混合料提高5%;冻融劈裂残留强度比达到97%,较基质沥青提高8%。  相似文献   

17.
针对隧道路面施工中使用热拌沥青混合料的问题,选择合适的温拌方式和复合阻燃剂,制备出一种温拌阻燃改性沥青,通过室内试验测定马歇尔稳定度、冻融劈裂强度比、动稳定度、弯曲应变分析温拌阻燃改性沥青混合料的性能,并通过实体工程进一步验证。研究表明:温拌阻燃改性沥青混合料具有和热拌沥青混合料同样良好的路用性能,复合阻燃剂的加入不会明显改变改性沥青的性能,温拌阻燃改性沥青混合料的应用可以达到节约能源,减少污染,保护施工作业人员健康,增长施工时间,提高施工质量的目的。  相似文献   

18.
基于Superpave旋转压实和马歇尔击实成型方法,简单介绍了Superpave沥青混合料配合比的设计过程,并通过车辙试验、小梁弯曲试验、冻融劈裂试验及浸水马歇尔试验,对比分析了在两种不同成型方式下AC-20沥青混合料最佳油石比、高温抗变形、低温抗开裂及水稳定性能差异,结果表明:成型方式对沥青混合料性能影响显著,采用旋转压实成型沥青混合料确定的最佳油石比要小于马歇尔击实方法,且动稳定度提升约26%,冻融劈裂比及残留稳定度升高约2%,破坏弯拉应变基本相同,综合路用性能更优。  相似文献   

19.
论述了改性沥青的性能及SBS改性沥青混合料在呼绥高速公路上的应用,并通过车辙试验的动稳定度及浸水马歇尔试验的残留稳定度对SBS改性沥青混合料性能进行评价。  相似文献   

20.
为了确定沥青混合料抗车辙剂的掺量,室内成型0.2%~0.8%不同掺量抗车辙剂的沥青混合料试件,并与未掺加抗车辙剂的沥青混合料对比高温性能、低温性能和水稳定性,试验结果表明:以路用性能为评价指标,沥青混合料抗车辙剂的最佳掺量为0.4%;在最佳掺量下,掺入抗车辙剂的沥青混合料的稳定度提高40%,动稳定度提高110%,弯拉强度提高30%,弯拉应变提高15%,水稳定性提高了6%,劈裂强度提高了27%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号