首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
地铁列车供风系统主要包括风源系统、风缸、用风设备及管路组件,对于确保用风设备正常工作,保障车辆运行安全性、平稳性及舒适性发挥着至关重要的作用。传统的供风系统设计选型多按照典型工况及依据经验进行估算。文章运用AMESim分析软件,根据供风系统中各元件的工作原理,建立了空气弹簧悬挂系统(包含空气弹簧、高度阀及差压阀)、制动系统等气动仿真模型,并可根据标准地铁列车供风气路原理图搭建各种编组型式的列车供风系统性能仿真分析平台。该平台不仅可以对列车初充风工况进行分析计算,还可以结合实际运行线路,根据停站时车辆载客量变化情况及通过曲线线路时空气弹簧偏载情况,研究分析供风系统的工作状态,如风源系统中空气压缩机的启停次数及平均工作率、风缸及空气弹簧的压力变化情况,同时还可以监测出各用风设备的耗风量,从而评估列车供风系统的综合性能。平台对于提高供风系统性能和设计分析能力、降低其能耗具有重要的工程意义。  相似文献   

2.
介绍了地铁车辆制动系统因空气弹簧压力急升引起车辆总风欠压所导致的问题,并对供风设备和空气弹簧的原理进行了分析.利用工程系统仿真软件AMEsim对列车制动系统的风源、空气弹簧等主要组成部分进行了建模,得出了不同载荷工况下总风压随载荷变化的仿真气压曲线.通过仿真结果,对地铁车辆空气弹簧气压急升引起的总风欠压问题提出了相应的建议.  相似文献   

3.
针对城轨列车空气制动系统的前期设计,以广州2号线和8号线为例介绍了有用的计算工具"用风估算法",通过估算列车各用风设备的用风量来选择合适的供风单元,进而计算出风源系统的充风时间,风源故障下紧急制动能满足的次数,最后通过试验来验证设计是否满足要求。  相似文献   

4.
易文生 《铁道车辆》2005,43(8):38-39
25K型客车由于采用了气动式塞拉门、空气弹簧、电空阀、气动式冲便阀和防滑器等装置,造成客车上使用压缩空气的设备越来越多,若仅仅依靠从副风缸或从制动管得到压缩空气,既增加了机车空气压缩机的负担(启动频繁),又影响车辆制动装置的性能。所以,25K型客车采用的是双管路供风,即制动用压缩空气与车辆其他设备用压缩空气分开。25K型客车的空气管路由总风管系统和制动管系统组成,  相似文献   

5.
太原铁路局曹西列检作业场地面试风设备为TWL-01型微机控制制动机试验系统和列车制动机试验监测系统。通过对列车车辆制动试验数据的分析,还原试风过程,为准确判断处理列车试风系统设备故障提供依据。  相似文献   

6.
李凤山 《铁道车辆》2008,46(3):32-33
2006年铁道部推广使用的列车车辆制动试验监测装置,符合铁路列车制动机试验在机车供风或地下风管路供风工况下尾部风压全部试验和简略试验的技术要求,是监控列检试风作业、提高试风作业质量、消除列车制动故障的重要监测设备.  相似文献   

7.
针对HXD3型机车CCBII制动系统默认设置"补风"在实际应用中存在的问题,通过对比分析,提出制动系统默认设置"补风"的改进建议.  相似文献   

8.
在不同线路、不同运营阶段,轨道车辆的耗风工况千差万别,如果供风系统的供风能力和耗风设备的用风量不匹配,就会导致供风系统工作率过低,或者供风能力不足而车辆运行异常问题。根据理想气体状态方程和各种耗风设备的工作原理,建立了"复兴号"动车组供风系统和主要耗风设备的数学模型,并分析了影响供风和耗风平衡的关键因素,探索了优化供风和耗风匹配关系的方法,为"复兴号"动车组的供风及耗风设备的设计提供理论依据。  相似文献   

9.
基于标准地铁车辆条件,对供风系统的总风工作压力和初充风时间两个关键顶层参数的统型开展了分析。通过仿真计算,对比了不同总风工作压力下列车制动次数的差异,分析了车辆编组、城市海拔高度等因素对列车初充风时间的影响。结果表明,总风工作压力提高将有助于增加制动允许次数,当其从750~900 kPa提高到800~950 kPa后,紧急制动次数增加1次,最大常用制动次数增加2次;海拔高度的增加、系统空压机停机压力的提高和空压机标称排量的增大均会导致列车初充风时间延长,而车辆编组的增加也会导致初充风时间延长,初充风时间顶层参数的统型不可一概而论,应区分不同海拔高度、不同车辆编组因素,文章对标准地铁总风工作压力及初充风时间指标统型提出了建议。  相似文献   

10.
采用流体仿真分析软件FLUENT研究制动风翼尾迹的影响范围及制动风翼纵向间距对制动效果的影响,同时分析制动风翼不同横向间距对制动阻力影响的规律.结果表明:2幅制动风翼的纵向间距越大.列车前部制动风翼对后部制动风翼的尾迹影响越小,当2幅制动风翼的纵向间距超过2节车厢长度时,这种影响完全消失;在制动风翼面积相同的条件下,增大每幅2片制动风翼的横向间距,能够提高风翼的单位面积制动阻力;由制动风翼产生的制动瞬时减速度随制动初速度的增加而增加,在紧急制动初速度为500km>h-1时由制动风翼产生的制动合阻力约为160kN.此时的制动瞬时减速度约为0.33m.s-1,可知,列车高速运行时由空气动力制动产生的制动阻力对高速列车制动贡献很大,空气动力制动在高速时具有优良制动性能.  相似文献   

11.
介绍了地铁车辆制动系统的制动电子控制单元(BECU)试验台的构成、工作原理、主要功能及性能参数等,详细说明了数据采集、处理和控制等子系统。试验结果证明,该试验台实际操作易于上手,人机交互界面直观,运行可靠,完全能满足实际的测试需求。在对BECU测试过程中,该试验台能够精确进行各种信号模拟,完成气动等各种试验,还可用于模拟地铁车辆制动工况下对电子控制单元进行检测与辅助设计等。  相似文献   

12.
根据提速机冷车的制动系统方案对制动初速120 km/h的紧急制动距离进行了计算,校核了车辆在各种工况下的制动率并提出了较为理想的制动率范围,分析了制动系统方案及参数对制动安全性的影响.  相似文献   

13.
王辉  张吸 《铁道车辆》2000,38(7):6-10
根据提速机冷车的制动系统方案对制动初速120km/h的紧急制动距离进行了计算,校核了车辆在各种工况下的制动率并提出较为理想的制动率范围,分析了制动系统方案及参数对制动安全性的影响。  相似文献   

14.
文章对在中低速磁浮列车上应用的气液转换制动系统和全液压制动系统分别进行了介绍,阐述了两种系统的组成、结构和工作原理,并通过对比分析两种系统的优缺点,提出中低速磁浮列车制动及供风系统的使用建议。  相似文献   

15.
潮湿工况影响高速动车组制动摩擦性能试验研究   总被引:1,自引:0,他引:1  
高速动车组制动摩擦副的摩擦因数在雨天或湿润的环境下存在衰退的问题,直接影响到轨道车辆的运行安全。随着我国广泛开行速度超过300 km/h的动车组,潮湿工况下制动盘的性能研究越来越受到人们的重视。现首先采用1:1制动动力试验台对高速动车组制动盘潮湿工况下的摩擦性能进行了测试研究,比较了干燥和湿润两类工况下制动盘摩擦性能的异同。潮湿工况对制动盘的摩擦性能的影响较为复杂:潮湿工况下平均摩擦系数存在着明显的下降且波动更加明显;制动压力对于平均摩擦系数的影响有限,但在较高制动初速度和潮湿工况下,较低的制动压力却可以有较高的平均摩擦系数。最后分析了潮湿工况的各种影响因素,并提出了潮湿工况下制动系统的控制策略。  相似文献   

16.
主风源系统作为动车组的核心系统之一,可为制动系统和其他用风设备提供压缩空气。主风源系统控制的合理性直接影响到动车组的运行安全和用风设备的正常工作。文章提出了一种旨在多个主空压机运行时间均匀化、单个主空压机启停次数最小化和单次运行时间最长化的控制策略,能够在保证主风源系统供风能力的同时,使得各主空压机运行时间相当。  相似文献   

17.
谢红太  王红 《铁道学报》2023,(10):42-51
基于三维定常可压的黏性流场N-S及k-ε双方程模型,以CR400AF平台动车组流线型外观为参考,装配新型“蝶形”风阻制动装置,模拟计算高速列车风阻制动装置不同布置状态时的气动特性,给出单排及多排制动风翼板布置的确定方法及最优方案。研究表明:在高速列车头车司机室流线型尾端连接处后2~5 m范围内设置安装首排制动风翼板,可有效为高速列车高速制动阶段提供较为可靠稳定的制动力,同时对首排制动风翼板工作时流固耦合及振动特性进行评估和说明;研究提出以列车制动需求为目标,纵向制动风翼板最优布置范围逐渐缩减的方式,通过计算流体动力学的方法确定制动风翼板设置位置及布置排数选择的研究方法,给出3节编组高速列车2排及3排制动风翼板最优布置方案。  相似文献   

18.
针对高速动车组涡流制动系统要求,结合线性涡流制动装置相关参数,提出了适用于线性涡流制动装置的供风控制原理及响应时间要求.通过仿真分析及地面试验验证了控制原理及响应时间的合理性.研究结果表明,提出的控制原理及响应时间满足高速动车组线性涡流制动系统要求,达到了预期目的.  相似文献   

19.
介绍了以PLC为控制核心的货车用风缸自动焊控制系统的软硬件,对该系统电机调速电路中晶闸客的移相触发控制电路进行了探讨,得到了高性能的晶闸管移相触发电路。该控制系统软硬件设计合理,具有较高的可靠性,能够满足高质量风缸自动化生产的要求。  相似文献   

20.
林文锋 《铁道运营技术》2012,18(1):18-19,22
针对目前列车空气制动性能试验作业,采用微机控制试风和列车尾部试风监控2套相互独立互不兼容系统存在的问题,提出了采用合并硬件和升级软件的方案,设计一套兼备原有系统功能和优点,并可以通过数据共享开发新功能的的试风测控新系统,以提高列车安全保障能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号