首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
船舶安全航行是航海领域重点关注的问题之一,为此研究基于大数据驱动的船舶航行轨迹异常检测方法。该方法利用不同类型传感器获取船舶航行大数据,然后使用船舶观测大数据相似度方程计算船舶航行大数据之间的相似度,得到来自同一船舶的航行大数据;再利用大数据驱动技术中的聚类方法建立船舶正常轨迹模型,获取船舶航行正常轨迹;依据船舶航行正常轨迹,利用大数据驱动技术内的Spark Streaming数据实时计算框架,通过计算船舶航行轨迹点与实际轨迹采样点之间的距离、航向角等,得到船舶航行轨迹异常检测结果。实验结果表明,该方法获取船舶航行实际轨迹精度较高,可有效检测船舶航行轨迹异常,具备较好的应用效果。  相似文献   

2.
为保证船舶一直按照既定的轨迹航行,避免发生碰撞事故,进行船舶航行轨迹控制具有重要的现实意义。为此,基于最小二乘算法进行船舶航行轨迹控制方法研究。该研究前一部分获取AIS系统中的船舶航行实时数据,得到船舶航行位置,后一部分利用最小二乘算法,并结合前一部分获取的数据,预测船舶航行角度和方向,控制船舶航行。结果表明:1)整体来看,实际航行轨迹线路与预期航行轨迹线路之间的拟合优度为0.984 7,比较靠近1,说明船舶航行实际轨迹符合预期。2)局部来看,通过对比10个不同节点处的航行速度和航行方向,误差比较小,说明所研究方法的航行轨迹控制效果较好。  相似文献   

3.
目前,船舶轨迹预测存在数据噪声严重、缺乏考虑历史轨迹的相似性的问题,导致预测精度不高,难以满足实际需求。针对该问题,从船舶自动识别系统(Automatic Identification System, AIS)数据去噪、在预测模型中考虑历史数据两个方面提高船舶轨迹单步预测的精度和可靠性。根据相邻时刻的AIS数据修复当前时刻的船舶运动参数;使用二维长短时记忆网络(Long Short-Term Memory, LSTM)算法分别从时间和空间的角度将当前船舶的航迹数据和历史轨迹数据相融合,建立航迹预测模型和区域预测模型;利用试验数据验证模型的综合性能。试验结果表明:该模型可获得精度较高的船舶航行轨迹。  相似文献   

4.
为实现更加精准、自动化的船舶航行轨迹预测,利用改进灰色模型,提出一种基于改进灰色模型的船舶航行轨迹自动预测方法。在船舶航行中的AIS数据中对船舶航行轨迹数据进行提取,其中AIS数据具体包括船舶航程数据、船舶动态数据以及船舶动态数据。通过数据估计算法插补缺失数据,分为2个步骤,第1步是对插补数据进行识别,第2步是对其进行插补。通过改进灰色模型对船舶航行轨迹进行自动预测,主要使用基于缓冲算子改进的灰色模型构建船舶航行轨迹自动预测模型。选取某船舶服务项目中包含的船舶AIS数据作为实验数据,对设计方法进行实例测试。测试结果表明,设计方法的数据提取质量较高、预测模型的误差较小,具有广阔的市场应用前景。  相似文献   

5.
传航行轨迹精准控制算法在多船并行情况下,由于计算中没有区分航线航向,造成航行精准度较低,为此提出多船并行航行轨迹精准控制算法。构建船舶轨迹精准控制模型,根据船舶航行目的生成船舶运行轨迹,以实际航行轨迹为基础计算船舶定位航线,分别计算船舶直线航行控制轨迹以及曲线航行控制轨迹,完成多船并行航行轨迹精准控制算法设计。设计仿真实验,通过模拟使用环境,将提出算法与传统算法进行比较,实验结果表明提出方法计算的航行精准度更高,证明研究方法具备有效性。  相似文献   

6.
由于船舶航行受海上环境的影响而产生航迹误差,为了准确控制船舶航行轨迹,提出利用AIS数据挖掘生成船舶航迹点方法研究。根据AIS数据挖掘算法,提取船舶航行轨迹点数据特征,利用船舶航行轨迹点数据库中航行线路设置信息与目标对象运动信息之间的相似性,挖掘出船舶航迹动力定位数据,将AIS数据挖掘算法映射到船舶海上航行领域中,提取出AIS船舶位置采集点,通过设定阈值得到船舶航行转向点,将所有转向点连接成线,初步生成船舶航行轨迹点,利用船舶轨迹点生成流程,实现船舶航行轨迹点的生成。实验结果表明,基于AIS数据挖掘的船舶轨迹点生成方法在精度和时间上,都可以准确控制船舶航行轨迹。  相似文献   

7.
为了提高船舶航行安全性,并应对航行过程潜在碰撞风险,提出海上高速航行船舶触礁距离实时计算方法。通过航海雷达探测船舶航行环境中的礁石目标,确定极坐标系下的位置坐标后,将其转换地心垂直坐标系下,构建基于PLSTM-FCN的船舶航迹预测模型,从船舶自动识别系统中获取高速航行船舶历史位置、航速、航向、船舶长度、宽度以及吃水深度等AIS数据,将其作为模型输入,模型输出为船舶航行实时位置预测结果,结合礁石目标位置,完成触礁距离的实时计算。实验结果表明,该方法可预测船舶航行航迹,预测MSE值仅为0.002 2;可实现船舶触礁距离的实时计算,计算结果与实际距离误差介于0.77~1.55之间。  相似文献   

8.
传统船舶航行异常监测系统,在复杂航行环境下无法对轨迹信号图像作出正确判定,导致船舶航行监测结果与实际航行监测要求偏差较大,影响船舶正常航行安全。因此提出复杂航行环境船舶航行异常监控系统软件设计。利用卡尔曼滤波算法,建立航行轨迹图像数据高帧率采集硬件,获取高清轨迹图像数据;软件功能主要分为轨迹图像信号建模、轨迹图像模型信号的异常处理与异常轨迹像素的平滑提取3部分;通过仿真对比数据,证明提出系统在复杂航行环境下,能够有效提升异常轨迹监测识别率22.34%。  相似文献   

9.
由于传统的航行轨迹数据采集算法对数据没有进行优化处理,导致数据采集精度低,无法满足船舶微惯导网络需求。因此,提出一种船舶微惯导网络中航行轨迹数据采集算法。在采集算法设计中,首先进行船舶航行轨迹的数据挖掘。然后,以航行数据为基础,结合遗传算法,完成船舶航行轨迹数据算法优化。最后,通过对航行轨迹的分析,实现船舶航行轨迹数据采集。实验结果表明,本文设计的数据采集算法,在相同的更新速度条件下,相比2种传统算法,数据采集精度更高。  相似文献   

10.
多船并行时,为精准控制船舶按照期望轨迹航行,研究多船并行航行轨迹精准控制算法。构建多船并行航行模型,分析多船并行航行位置与速度信息、动力控制量信息后,从首摇转矩与螺旋桨转速调节的角度,研究轨迹控制方法。将需控制轨迹的船舶当下位置与速度信息、期望位置与信息,作为基于位置与速度调节的多船并行航行轨迹控制算法的控制样本,计算当下位置与速度的误差值后,由模糊控制算法整定航行轨迹控制器3种控制参数,输出位置控制量、速度控制量,作为船舶首摇转矩、螺旋桨转速控制量,实现多船并行航行轨迹精准控制。实验结果表明:使用此算法,理想工况中多船并行航行位置与期望位置、航行速度与期望速度均一致;恶劣工况中多船并行航行轨迹的X轴位置误差、Y轴位置误差均小于0.2 m,轨迹控制结果精准。  相似文献   

11.
针对船舶轨迹预测精确性与实时性的需求,从数据层面探究影响船舶航行轨迹的特征,通过相关性分析确定网络的输入,提出结合循环神经网络-长短期记忆(Recurrent Neural Networks-Long Short Term Memory,RNN-LSTM)的船舶航行轨迹预测模型.通过船舶Z形试验相关数据与实船实际航行数...  相似文献   

12.
赵琦  许志远  葛佳薇 《船舶工程》2023,(6):124-129+139
利用深度学习方法预测船舶未来航行趋势,对海上交通安全以及船舶管理具有重要意义。在船舶自动识别系统(AIS)中已知的经度、纬度、航速数据基础上,提出一种基于门控循环单元结合双卷积层长短期记忆神经网络(GRU-Dconv LSTM)预测模型。根据原始数据的变化趋势,采用标准差法对数据中的异常值进行处理,得到最终试验数据。该模型一方面通过门控循环单元(GRU)学习船舶历史数据上的运动规律;并采用双卷积层与长短期记忆神经网络(LSTM)结合的形式充分提取数据深层信息,提高模型对时序数据深层次特征的挖掘能力。将该模型与卷积长短期记忆神经网络(CNN-LSTM)、卷积门控循环神经网络(CNN-GRU)以及卷积层长短期记忆(Conv-LSTM)神经网络等3个模型进行对比,将均方根误差、平均绝对误差、平均绝对百分比误差作为评价标准,结果表明,GRU-Dconv LSTM模型在经度和纬度预测上误差较小,精确度较高。  相似文献   

13.
徐婷  戴文伯  鲁嘉俊 《水运工程》2019,(12):119-122
针对疏浚监控管理工作很难全天覆盖所有船舶、无法做到实时监控的问题,分析某绞吸挖泥船的AIS(自动识别系统)高频数据,包括疏浚船舶动态的航行轨迹、速度、航向等数据。对船舶施工轨迹辨识和预测进行研究,提出利用DBSCAN聚类算法粗略识别出施工区域,利用LOF(局部异常因子)算法去除航行轨迹中非施工状态下的轨迹,并利用时间序列ARIMA模型对船舶施工轨迹进行预测。结果表明,DBSCAN聚类算法结合LOF算法进行施工轨迹辨识方法合理可行,ARIMA模型进行施工轨迹预测的方法具有精确度高、实时性、易实现的特点。  相似文献   

14.
嵌入式船舶导航系统航行轨迹智能控制方法   总被引:3,自引:3,他引:0  
传统船舶航行轨迹智能控制方法存在控制精准度低的缺点,为此提出嵌入式船舶导航系统航行轨迹智能控制方法。采用双坐标系对船舶航行轨迹模型进行建立,以建立的船舶航行轨迹模型为依据,利用传感器对船舶航行轨迹数据进行采集与处理,通过采集的数据计算船舶航行轨迹偏差,采用船舶航行轨迹控制算法对航行轨迹偏差进行调整,实现了嵌入式船舶导航系统航行轨迹的控制。通过实验可得,提出的嵌入式导航系统航行轨迹智能控制方法控制精准度比传统方法高28%,说明提出的嵌入式导航系统航行轨迹智能控制方法具备极高的有效性。  相似文献   

15.
传统水下航行器轨迹规划计算处理过程中,受到自身算法逻辑参数影响,建模数据计算涵盖不够严谨,无法对小概率误差轨迹进行引入分析,从而导致航行器预判轨迹出现偏离。针对问题产生原因,提出基于大数据分析的水下航行器运行轨迹规划模型研究。首先,对传统模型计算算法进行修正,引入MFT样条差值规划算法对构建模型轨迹数据进行优选规划计算;接着引入迭代多项轨迹构造算法,对规划模型数据进行轨迹模型构建计算;最后,通过对构建模型进行仿真数据测试。通过与传统模型的对比证明提出构建的轨迹模型能够解决传统模型存在的问题与不足。  相似文献   

16.
船舶航行的环境十分复杂,动态变化特点显著,导致当前方法无法对船舶轨迹进行精准重构,为了改善船舶航行轨迹重构的精度,提出基于被动式红外传感器的船舶轨迹重构方法。首先建立船舶航行的运动模型,然后通过被动式红外传感器对船舶航行数据进行采集,并通过卡尔曼滤波算法重构船舶轨迹,保证船舶轨迹跟踪准确性,最后采用具体实验对船舶轨迹重构方法性能进行分析。结果表明,本文方法能够实时捕捉船舶航行环境的动态变化趋势,可以高精度的重构船舶航行轨迹,船舶轨迹重构误差小,而且船舶轨迹重构速度快,可以保证船舶航行的安全。  相似文献   

17.
研究基于轨迹数据的船舶交通密度计算方法,利用精准的船舶交通密度计算结果提升海上交通规划水平。利用AIS设备采集船舶航行轨迹数据,利用均匀参数化方法对所采集的航行轨迹数据重采样处理。将通过重采样处理获取的航行轨迹数据,划分为静止轨迹数据点以及移动轨迹数据点,依据数据点间的欧式距离,以及船舶航行方向、航行速度的相似性,选取基于密度的DBSCAN聚类算法完成轨迹数据聚类。依据船舶航行轨迹数据聚类结果,选取多维密度方法,通过更新船舶经过总数、船舶经过总时间等参数,计算船舶交通密度。实验结果表明,该方法可以依据船舶航行轨迹数据,精准计算船舶交通密度,为海上交通规划提供有效支撑。  相似文献   

18.
传统电力负荷预测方法在混度向量模糊场景下,所得到的电力负荷预测结果与实际电力负荷截值之间的误差较大。为了解决上述混沌场景下的预测精准度问题,提出电力推进船舶电力负荷预测方法。实现步骤共分为建立模糊预测量模型、混沌量回归优化与向量机预测输出负荷的优化3部分。通过对预测不同阶段关系量的优化,实现提升预测精准度的效果。与传统预测方法的数据对比表明,提出方法的预测值与实际负荷值之间的误差,明显小于传统预测方法预测值,更适合电力推进船舶电力负荷的预测应用。  相似文献   

19.
针对多自主式水下航行器轨迹跟踪控制中的不确定性问题,研究多自主式水下航行器轨迹精准跟踪控制方法。构建基于灰色预测的轨迹精准跟踪控制模型,利用灰色预测模型预测航行器航向角,构建一元多项式回归模型,拟合航行器初始航向角同预测航向角间的残差,优化灰色预测模型,提升航行器航向角预测精度。将航向角预测结果代入PID控制器内,通过计算航向角控制率确定位置误差、速度误差与加速度误差,通过控制上述误差实现航行器轨迹准确跟踪控制。实验结果显示该方法可在航行器不同运动特性下准确跟踪轨迹,并具有较好的控制效果。  相似文献   

20.
传统舰船航行自动控制功能主要通过算法对定义舰船轨迹数据与舰船航行数据综合分析计算,根据计算结果对PID自动控制器下达控制指令来完成自动控制操作。此种控制模式受到算法定义逻辑限制存在一定的控制误差,无法真正做到舰船航行的精准控制。为解决上述问题,提出人工智能技术的舰船航行自动控制研究。首先对舰船航行轨迹进行模型计算,接着对舰船PID控制数据进行模型计算。最后,通过人工智能技术对航向轨迹与PID控制数据进行关联计算,得到精准的舰船航行控制数据。通过对比实验对提出的控制方法与传统控制方法进行对比,数据证明提出方法的控制精准度高于传统自动控制系统。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号