共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
传统的特征匹配模型存在实际匹配时误匹配消除数量过小,导致特征点正确匹配数量过少的问题,针对这一不足,构建一种复杂光照条件下舰船遥感图像特征模型。首先提取复杂光照条件下遥感图像的稳定特征点,排序稳定的匹配特征点,设置一个匹配窗函数为整个匹配区域提供匹配兴趣值,消除误匹配,完成特征模型的构建。构建仿真实验环境,测定在50个投票值数量下,传统匹配模型与构建的匹配模型的正确匹配特征点数量,结果表明:文中构建的匹配模型得到的正确匹配数量为48,正确匹配数量更多。 相似文献
3.
4.
5.
舰船目标搜索过程中,海杂波是影响其精度的主要因素。为提高复杂海杂波下舰船多目标搜索的准确度与可靠性,提出基于分解策略的舰船多目标分解搜索算法。保证搜索精度和可靠性的同时,显著降低了算法的时间复杂度,调和了目前算法搜索精度与运行时间的矛盾。实验中,与现有算法的对比结果显示,本文算法在获得良好搜索精度的同时,均具有较高的实时性。 相似文献
6.
7.
8.
9.
10.
水下目标检测具有重要意义,在军事和民用领域都发挥着重要作用。实际场景中可以获得的声呐图像非常有限,且声呐图像的信噪比较低,无法得到较好的检测结果。因此,本文引入小样本学习,基于Faster RCNN两阶段目标检测算法,选择不同的策略对模型进行优化,得到了较好的检测结果并验证了小样本目标检测在声呐图像领域的可行性。根据混响对声呐图像的影响进行仿真实验,得到不同混响背景下的声呐图像,对比分析了不同数据集下训练模型的检测性能。实验结果表明,在训练样本中增加混响信号可以提高低信噪比条件下的目标检测精度。 相似文献
11.
12.
遥感卫星探测是进行海上舰船目标探测与识别的主要途径,受限于海上气象条件,比如海雾、阳光反射等,海上船舶的遥感图像往往存在大量噪声。为了提高船舶遥感图像的目标识别精度,本文针对船舶遥感图像的图像处理技术进行系统研究,主要包括船舶遥感图像的特征分析,遥感图像的噪声过滤与增强,对于改善遥感图像的目标识别效率有重要的意义。 相似文献
13.
14.
15.
16.
针对SAR图像中舰船目标识别的问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)和核Fisher判别分析(Kernel Fisher Discriminate Analysis,KFDA)相结合的舰船目标识别算法.用核主成分分析的方法对实测的SAR舰船目标数据进行特征降维,再结合核Fisher判别分析法对降维后的样本数据进行多类别分类.将该方法用于对实测的四类舰船目标进行识别,平均识别率可达91.25%.实验结果表明,核主成分分析与核Fisher判别分析相结合的方法可提取目标的有效特征,在较低特征维数情况下获得较高的目标正确识别率. 相似文献
17.
《舰船科学技术》2017,(13)
针对SAR图像中舰船目标识别的问题,提出了基于核主成分分析(Kernel Principal Component Analysis,KPCA)和核Fisher判别分析(Kernel Fisher Discriminate Analysis,KFDA)相结合的舰船目标识别算法。用核主成分分析的方法对实测的SAR舰船目标数据进行特征降维,再结合核Fisher判别分析法对降维后的样本数据进行多类别分类。将该方法用于对实测的四类舰船目标进行识别,平均识别率可达91.25%。实验结果表明,核主成分分析与核Fisher判别分析相结合的方法可提取目标的有效特征,在较低特征维数情况下获得较高的目标正确识别率。 相似文献
18.
在遥感成像技术快速发展的背景下,获取遥感图像的方式有所改变,已经不再局限在合成孔径雷达方面,而是开始采用光学相机。通过光学相机所形成的遥感图像具有较高的分辨率,且能够在图像中对感兴趣目标进行检测。其中,光学遥感图像是军事活动应用遥感技术的重点且备受关注。将极限学习机算法应用在光学遥感图像舰船目标检测中,可以进一步提高检测质量与效果。该算法属于全新的单隐含层前馈神经网络学习算法,结构相对简单且能够快速学习,全局寻优能力较强,计算复杂程度降低,能够获得最小平方优化解,性能稳定且泛化。总体来讲,基于极限学习机算法的光学遥感图像舰船目标检测研究十分有必要。 相似文献
19.
海上舰船的目标检测和特征提取是非常重要的研究课题,不仅可以用于军事领域的敌方船只侦察,还可以用于海上交通管理和渔船监管等领域。高分辨率的舰船光学遥感图像含有丰富的舰船航行状态信息,研究舰船光学遥感图像的分析技术有助于提高舰船目标识别和特征提取的效率。本文详细介绍了图像处理技术中的PQFT模型和小波变换理论,并基于PQFT模型和小波变换研究了舰船高分辨率遥感图像的识别和特征提取技术,有重要的理论和实际应用意义。 相似文献
20.