首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
远洋和深海区域的海上气象条件恶劣,常常伴随着大风大浪等恶劣天气,这种高海情下的船舶航行受海风、海浪等干扰作用力的影响,会产生大幅度的横摇、纵摇等运动形式,甚至导致船舶倾覆等重大事故,影响船舶的航行安全。针对船舶在高海情下的航行安全问题,本文通过建立船舶的运动模型以及干扰作用力模型,在此基础上设计一种基于预测控制理论的船舶横摇运动控制系统,取得了良好的控制效果。  相似文献   

2.
舰船在海上航行时受到海浪与海风作用力的冲击,会产生横摇、纵摇等运动,当横摇与纵摇角度超过其平衡点时,舰船就可能发生倾覆等严重的事故。本文研究的目的是提高舰船的减摇与抗倾覆能力,本文基于DSP控制器,设计一种舰船减摇与抗倾覆控制系统,并详细介绍了该控制器的硬件组成与减摇性能。  相似文献   

3.
锚泊运动是舰船正常运行时必不可少的运动,当船舶在海上或港口停泊时,都需要借助锚链等进行舰船的定位。由于舰船在海上锚泊时会受到海风、海浪和洋流等作用力,导致锚泊的稳定性、安全性下降,不仅影响舰船的海上定位和作业,还有可能导致严重的事故。因此,研究舰船在多种因素下的锚泊运动具有重要的意义。船舶的锚泊性能与其在海浪中的六自由度运动息息相关,本文利用流体动力学原理建立了舰船锚泊运动的动力学模型,同时建立了非线性波浪力的数学模型,并在此基础上研究了舰船锚泊运动和六自由度操纵运动。本研究主要应用于舰船在恶劣条件下的安全锚泊,并提高舰船的操纵灵活性。  相似文献   

4.
船舶在海上的航行受到海洋气象和水文条件的影响,会产生垂荡、横摇和纵摇等多种形式的运动,这些复杂运动对舰船航行稳定性和船载精密设备的工作精度有不利影响。因此,对船舶的横摇、纵摇等运动进行短时预测具有重要意义。本文系统介绍卡尔曼滤波技术,并利用滤波技术和随机海浪数学模型,研究一种船舶横摇运动的预测方法。  相似文献   

5.
大量的统计数据表明,船舶发生的各种事故原因中,最为常见的船舶受海上大风浪影响,产生剧烈的摇摆和振荡导致船舶受损甚至倾覆。因此,研究船舶的减摇成为迫切的需要。船舶在海面上航行时,主要受到的作用力形式包括海浪作用力及力矩、海风力及力矩和洋流扰动作用力,当船舶受到的摇荡载荷超过船舶所能承受的载荷强度时,就会导致船体结构损坏。此外,当船体产生大幅度的横摇时,可能导致船舶的航向控制失灵,引发事故。本文充分结合神经网络算法,设计一种船舶横摇首摇耦合运动的前向智能控制模型,并介绍该控制模型的原理。  相似文献   

6.
舰船在执行作战任务时需要消耗大量的能源,食品、武器弹药等资源。由于距离海岸基地较远,采用补给船对舰船进行物资的补充就显得十分必要。在舰船的物资补充过程中,受到海浪作用力的干扰会使舰船本身产生横摇、垂荡等运动形式,不利于物资的稳定运输。针对这一问题,本文结合PID控制器和模糊控制算法,设计了一种舰船波浪补偿伺服控制系统,并对该系统的原理以及性能进行了介绍。  相似文献   

7.
稳定性是船舶能否正常运行的重要指标,船舶在日常工作时受海风、海浪等干扰作用力的影响,往往会发生横摇、垂荡等不规则运动,如果产生的运动幅度过大,很可能导致船舶倾覆等危险事故。因此,业内研究人员一直将船舶的减摇视为重点研究方向。主动式减摇水舱利用控制系统产生力矩,并抵消船舶发生横摇等运动的力矩,使船体保持稳定,具有结构简单、成本低等优点,广泛应用于各类大型舰船上。本文针对船舶的模型试验过程,开发了一种主动式减摇水舱控制系统,并介绍该控制系统的硬件组成和功能,在Matlab中进行了减摇特性试验。  相似文献   

8.
舰船在海浪、海风作用下会发生横摇运动,一旦横摇运动的幅值超过舰船平衡点后就可能发生倾覆等严重的船舶交通事故,因此,船舶领域的从业人员针对船体的减摇控制技术进行了大量的研究。本文搭建一种视觉仿真系统,验证不同船舶减摇控制技术的实际效果。基于虚拟现实技术,结合船舶横摇运动模型,在MultiGen Creator软件平台中搭建了船舶的横摇运动仿真系统,重点对系统的工作原理等进行详细介绍。  相似文献   

9.
舰船的短期运动预测有助于舰载武器系统的校准,从而提升武器系统的打击精度,由于舰船在海浪作用下持续不断做非线性多自由度运动,因此,必须建立一种非线性预测模型进行舰船目标运动的准确预报。本文介绍一种非线性灰度理论,结合该理论对舰船的短时纵摇角度等运动进行预测建模。结果表明,基于灰色系统的舰船目标运动预报有较高的精度。  相似文献   

10.
舰船因海浪的起伏而产生了横摇、纵摇、垂荡等运动状态,从而破坏了舰船静止时的磁场特性.在假设横摇、纵摇、垂荡为简谐运动的前提下,利用静止舰船磁场模型,仿真和分析了舰船运动对舰船磁场特性的影响.  相似文献   

11.
通常情况下,舰船在风浪环境下航行。在海浪的扰动作用下,舰船海上航行很容易发生摇荡,导致船体出现倾斜。特别是小型的舰船,其船体倾角最大超过15°。在实战期间,如果舰船出现摇荡,将直接影响船载火炮操纵的效果,使火炮发射的准确率下降,不利于船载火炮作用的发挥。在这种情况下,为确保舰船航行的稳定性,要针对其运动展开科学预测。基于此,本文将舰船的海上航行运动预测作为主要研究内容,从而提升舰船的运动预测能力。  相似文献   

12.
船舶运动受扰力预测,是实现对船舶摇摆控制的关键步骤。为达到有效控制船舶摇摆的目的,基于遗传神经网络,完成船舶运动受扰建模预报和预测方法选择。模拟船舶航行状态,设计仿真对比实验结果表明,基于遗传神经网络的船舶受扰力预测模型,有效提升横向与纵向运动受扰力预测准确性,完成有效控制船舶摇摆的目的。  相似文献   

13.
随着船舶工业的技术进步,高精度的船载仪器被越来越多的应用到舰船领域。其中,卫星雷达、武器制导等先进技术对舰船稳定性要求很高,受海浪载荷作用下,舰船的振动和摇摆都会降低这些船载设备的精度。针对这一问题,本文研究了一种基于嵌入式技术的舰船电子水平仪控制系统,利用嵌入式芯片DSP处理水平仪的三自由度位置信号,并控制机械传动结构补偿舰船运动导致的水平仪误差,具有重要的实际应用价值。  相似文献   

14.
在舰船减横摇控制中,尤其当遇到海浪干扰后,控制参数的优化时间较长,导致控制的实时性达不到要求,使舰船无法达到最佳控制状态。基于此,采用混合遗传算法,设计一种舰船减横摇控制方法。采用自适应调节策略,优化遗传算法,设计PID控制器,利用设计的PID控制器,通过优化控制器参数,对舰船减横摇实施控制。通过对比实验,与2种传统方法作比较。实验结果表明,提出的舰船减横摇控制方法能够在较短的时间内将舰船横摇角控制至最小,所需时间比传统方法 1缩短600 s,比传统方法 2缩短550 s,且控制后的舰船横摇角最小。  相似文献   

15.
运动预报是部分舰船系统的重要组成部分。为了有效地解决这一问题,文章提出了一种基于海浪峰值频率估计的自适应舰船运动预报方法。在舰船运动与海浪激励的建模基础上,建立了基于最小二乘估计的自复位海浪峰值频率估计器。采用自回归移动平均(ARIMA)模型拟合方法预报舰船运动,并通过海浪峰值频率估计值自适应调节ARIMA模型的采样周期,提高了复杂海况下对舰船运动的预报能力。该方法与常规ARIMA模型方法、反向传播神经网络方法的仿真对比结果表明了该方法在解决舰船动态预报问题上的良好精度和鲁棒性。  相似文献   

16.
本文旨在向舰船设计人员叙述一下舰船横摇现象、采用现有理论方法进行的横摇预测和采用现有减横摇系统进行的减摇,并对现有的预测方法进行评论。可以断定,采用现有的方法能良好地预测没有减摇装置的横摇运动,而在预测横摇运动中必须考虑到耦合横摇-横荡运动。本文还讨论了被动式和主动式横摇减摇水舱和主动式减摇鳍的使用,并探讨了各种减摇装置的尺寸、性能和优缺点。本文最后认为,需要进行模型试验来确定预测减横摇装置的性能和进一步研究横摇运动。  相似文献   

17.
推进轴系是舰船动力系统的重要部件,决定了舰船动力输出的稳定性和可靠性。在舰船日常运行时,会受到水下爆炸、海浪作用力等动态因素的冲击载荷,导致推进轴系产生振动、变形等问题,进而影响舰船的正常运行。因此,研究动态环境下的舰船推进轴系抗冲击性能有重要意义。本文分析了舰船推进轴系工作时受到的扭振和弯曲振动,研究了舰船结构在水下爆炸下的动态响应,并利用有限元分析技术对舰船推进轴系的抗冲击强度进行校核和仿真分析。本研究对提高舰船推进轴系的抗冲击性能有重要的理论指导意义。  相似文献   

18.
随着人类对海洋资源开发规模的不断提高,远洋航运和远洋资源开发成为国民经济中的重要组成部分,由于传统的船舶抛锚系泊方式具有海上定位精度差、成本高、稳定性差等缺点,难以满足远洋舰船的海上定位需求。动力定位技术是利用舰船四周的推进器和船舶动力控制器等装置,产生具有一定方向和大小的推进作用力,抵消海风、海浪等干扰作用力和力矩,使船舶的定位精度和稳定性显著改善。本文的研究对象是船舶动力定位系统,详细介绍了一种非线性估计滤波器的工作原理,并研究了该滤波器在舰船动力定位系统的应用。  相似文献   

19.
船舶的运动控制受多种因素的影响,比如海浪的作用力大小、风力和海水温度等。而海浪的作用力大小对船舶的运动控制影响巨大,特别是在复杂环境中,精确的海浪作用力常常难以预测。本文针对船舶操纵过程中遇到的难题,采用先进的非线性控制算法建立了船舶的运动模型,然后通过参数控制法对海浪方向谱的实现原理进行了建模分析,建立了精确的波浪运动模型,最后采用Matlab软件,对此模型的时域响应性能进行仿真验证,从而获得良好的性能。  相似文献   

20.
针对舰载雷达平台在风浪中的运动,从海浪的功率谱研究入手,分别建立舰船受风浪作用而产生的横摇、纵摇和升沉的数学模型.在此基础上,给出了雷达天线各扫描时刻所产生的位置指向误差,并进行了仿真模拟.实验结果表明,该方法不仅有助于舰载雷达系统的性能分析,而且也有助于雷达对抗战场环境的内场注入式仿真研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号