首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
南京长江第四大桥北锚碇矩形沉井高52.8 m,共分11节,分4次接高下沉施工,其中前4节采用整体降排水下沉施工,后7节分3次采用不排水下沉施工,主要介绍北锚碇沉井前4节整体降排水下沉施工关键技术。  相似文献   

2.
南京长江第四大桥北锚碇沉井不排水下沉施工关键技术   总被引:1,自引:0,他引:1  
南京长江第四大桥北锚碇矩形沉井高52.8 m,共分11节,分4次接高下沉施工,其中第5~11节分3次采用不排水下沉施工,主要介绍北锚碇沉井不排水下沉施工所需设备配置、空气吸泥机吸泥工艺等关键技术。  相似文献   

3.
马鞍山长江公路大桥南锚碇沉井下沉采取“3次接高,3次下沉”的方案.为保证该方案的施工安全,对沉井下沉可行性指标进行验算,并对沉井首次接高期间的沉降量进行预估.计算结果表明,该方案能够满足沉井下沉初期结构本身的安全,保证首次接高期间的沉降量尤其是不均匀沉降量在允许的范围内.南锚碇沉井下沉时,土体采用分区对称的开挖方式,当沉井下沉至标高-34 m左右时启动空气幕助沉,通过对沉井降排水下沉和不排水下沉的过程进行实时监控和分析,有效地确保了该沉井下沉的安全、平稳.  相似文献   

4.
马鞍山长江公路大桥北锚碇沉井基础施工中,沉井不排水下沉终沉阶段采用空气幕辅助下沉.该沉井采用3次接高、3次下沉的工艺,在第2节沉井接高时,在其井壁外侧布置竖向风管、水平风管和气龛,并在后续沉井接高中将竖向风管相应接长.终沉阶段向风管内通人压缩气体,气体从气龛孔喷出后使井壁与土壤之间的侧摩阻力减小,从而达到促使沉井快速下沉的目的.沉井下沉中应用空气幕对加快沉井施工进度、提高工程质量、降低工程造价方面有显著成效.  相似文献   

5.
南京四桥北锚碇基础采用69×58m矩形沉井,沉井顶面高程+4.30,刃脚高程-48.50m,置于密实圆砾石层,下沉深度为52.8m。为使沉井顺利下沉到位,同时减少对长江大堤的不利影响,沉井前期采用深井降水和泥浆泵吸泥的排水下沉方案,后期采用空气吸泥机吸泥的不排水下沉方案。为了不破坏沉井底部圆砾石层,最后启用空气幕助沉措施,使沉井沉至设计位置。  相似文献   

6.
由于南京长江第四大桥北锚碇沉井基础支撑在分布不均匀的卵砾石层上,给沉井是否能够顺利下沉至设计标高带来诸多不确定因素,沉井不排水下沉后期下沉困难,开启了沉井井壁预先埋设的空气幕,助沉作用效果明显,主要介绍该沉井砂套结合空气幕助沉措施的设计、应用及作用效果等。  相似文献   

7.
南京长江第四大桥北锚碇采用沉井基础,沉井尺寸为69.0 m×58.0 m×52.8 m,置于密实卵砾石层,工程地质条件复杂.沉井共分11节,第1节为钢壳混凝土沉井,其余均为钢筋混凝土沉井.采用打设砂桩和换填砂土复合地基加固法加固地基.在加固地基上现场拼装钢壳沉井节段,浇注第1节沉井混凝土.11节沉井分4次接高下沉,首次下沉采取水力吸泥机取土、降排水下沉,其余3次下沉采取空气吸泥机取土、不排水下沉.沉井下沉就位后按照4个分区的顺序逐区进行封底混凝土施工.施工监测表明,沉井下沉姿态、偏差均控制在规范标准之内.  相似文献   

8.
马鞍山长江公路大桥北锚碇沉井下沉施工技术   总被引:1,自引:1,他引:1  
在马鞍山长江大桥北锚碇沉井基础下沉施工过程中,根据地层的深入和地质情况变化,先采取沉井四周布置降水井、水力吸泥机取土的排水下沉法,后期则采取搭设钢平台、安装龙门吊等设备进行不排水吸泥下沉的方法,终沉阶段启动空气幕助沉措施,确保了沉井下沉的稳定,在加快施工进度、提高工程质量、降低施工成本等方面取得了显著效果.  相似文献   

9.
王宏翔  李维生 《公路》2021,66(12):193-198
在超大型沉井施工过程中,由于沉井体积较大,重量大,下沉深度深,受地层地质、地下水、周边结构物等影响,在不同下沉阶段,其下沉方式不同。在大型桥梁陆地沉井下沉前期采用降排水下沉,中后期采用不排水下沉,不同地层,取土方式不同,对四周地面、结构物等影响非常大。比如在粉土、粉质黏土、粉砂、粉细砂和圆砾等地质中容易出现取土不均匀,取土不当引起内外压力差过大,产生涌砂等现象,造成沉井突沉,甚至沉井倾斜,沉井四周地面不同程度的沉陷。为了确保沉井施工质量和安全,顺利下沉到位,依托南京仙新路过江通道北锚碇沉井的不排水下沉关键技术进行讨论研究。  相似文献   

10.
为了解特大圆形锚碇沉井下沉施工中下沉系数和稳定系数变化规律,以武汉鹦鹉洲长江大桥北锚碇高43m、外径66m的沉井基础为背景,运用太沙基理论对3次接高与3次下沉的不排水沉井施工方案各工况进行稳定性验算。结果表明:在前2次沉井下沉过程中,其下沉系数较大,下沉较容易;第3次下沉过程中,其下沉系数减小,下沉较困难,须采取相应助沉措施。沉井的正面阻力和侧摩阻力在各下沉工况下均随着沉井的下沉深度呈线性增加,且正面阻力在沉井节段接高稳定工况下增幅达到最大,在刃脚踏面支承工况下增幅最小,稳定性均满足要求。  相似文献   

11.
船闸基地锚泊区采用沉井式结构作为基础,主要是由于受周边环境影响,施工场地狭隘,同时地基承载力较弱.沉井施工能较好地适应上述问题,从施工结果来看达到了预期的效果.同时,沉井施工对缩短工期起到了一定的作用.文中介绍了施桥三线船闸工程土建标船闸基地锚泊区沉井的制作、下沉及下沉过程中施工技术控制.  相似文献   

12.
沉井以其整体性强、结构稳定性好、适用土质范围广等特点,对于一些较大埋深的泵井构筑物,是一种较常用的施工方法。通过遂宁某污水厂进水泵房工程沉井施工实例,详细阐述了在砂、卵石地质条件下,通过分析地质、水文特点,选用沉井排水下沉与不排水下沉相结合的施工方案顺利完成该项目建设的整个施工流程,为类似工程提供借鉴和参考。  相似文献   

13.
深井降水的目的是为了降低沉井附近区域的地下水位,使沉井在施工中锅底无水,达到干施工的效果。该文以上海临港新城重装备产业区一期市政配套工程Y2雨水泵站工程项目为背景,结合项目中为配合"排水下沉法"施工的沉井所采用的深井降水施工,对深井降水施工工艺进行讨论,可供今后类似工程参考。  相似文献   

14.
为解决城市核心区停车问题,提出井筒式地下车库自下沉沉井建造技术,充分挖潜利用地下空间资源建设地下立体停车库。该技术采用“装配式+自下沉沉井”技术施工,将装配式建筑的特点和自下沉沉井工艺相结合; 采用工厂标准化生产预制片,质量可靠; 现场拼装,减少混凝土浇筑施工量,有效节约工期。整个沉井施工过程无放坡、占地小、无需大型设备、施工速度快、安全性高、噪音小,对周边建筑和管线影响小。该技术已在工程实践中得以应用。  相似文献   

15.
沈斌 《公路交通科技》2008,25(4):108-112
润扬长江公路大桥南汊悬索桥北锚碇基坑工程,在初步设计阶段,结合科研,针对冻结壁围护结构、沉井、地连墙围护结构的设计方案,进行了施工风险分析和对策研究(特别是冻结法方案)。针对冻结法方案大直径结构冷量损失大、冻结壁均匀性要求高、基底突水、停电等风险,提出了三排冻结管布置、冻结壁保护、基底注浆、双回路供电、钢筋混凝土内衬等对策;针对沉井下沉控制困难、地表沉降及井底流砂等风险,提出了空气幕或触变泥浆助沉、控制降水等对策;针对地连墙成槽风险,提出了液压铣槽机成槽等对策。最终将地连墙围护结构方案用于工程实践,实现了润扬大桥北锚基坑施工的万无一失。  相似文献   

16.
特大型沉井制作和下沉施工技术   总被引:1,自引:0,他引:1  
上海市竹园第一污水处理厂出口泵房为特大型沉井,该文针对此沉井的具体特性,着重研究特大型沉井下沉分析及相关的施工技术。  相似文献   

17.
杏花路下穿通道雨水泵站项目位于武汉市新洲区,泵站深度较深,为选取合适的建造方案,在设计前期针对雨水泵站常见的两种施工工艺——明挖现浇法和沉井法,做了详细的方案设计,并在施工难度、施工工期、对周边环境的影响和工程造价等方面进行了对比分析。结果显示:沉井法比明挖现浇法的优势在于综合造价低、风险小,但工期较长,在工期不是控制因素的前提下可以优先采用;在软土地区施工沉井时,需要在设计阶段充分考虑沉井下沉过程中可能出现的各种问题,采取充分的措施降低风险,确保沉井顺利实施。  相似文献   

18.
黄土地区沉井井壁土压力计算研究   总被引:1,自引:0,他引:1       下载免费PDF全文
闫登峰 《路基工程》2010,(5):148-150
对沉井过程中沉井井壁所受的土压力,普遍观点认为沉井受主动土压力的作用,可根据Coulomb和Rankine土压力理论进行计算与分析。但在西安等黄土分布比较广泛的地区,该法所得土压力与实际的土压力有较大出入。有鉴于此,文中从井后土体回弹再压缩角度提出了比较符合实际土压力的井壁土压力计算方法。  相似文献   

19.
王海英 《隧道建设》2007,27(5):37-40
深圳地铁一期工程国贸站—老街站区间暗挖隧道设计为单洞双层重叠隧道,国内地铁工程首次采用该种特殊结构形式,隧道采用台阶法分四步开挖。根据施工地表沉降实测资料,对施工引起的地表沉降规律进行了分析,如重叠隧道施工引起地表沉降范围、沉降大小、沉降历时规律与特点等。对影响地表沉降规律的主要因素地质条件、台阶长度等进行较全面的分析,并提出了控制地表沉降的相应的对策与措施。  相似文献   

20.
气压沉柜施工技术是利用气压排水,造成局部水下无水的施工作业空间,人员可直接进入柜内施工的一种施工工艺。该工艺先后在葛洲坝等大型水利枢纽中应用并取得成功。该文介绍了2007年2月利用此方法成功对蕴东水利枢纽内外闸首门槽、闸门底坎部位进行了水下修补,取得施工工期短、投资省、(通航)影响小的预期效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号