首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sideslip driving status is of fundamental importance to the stability of a vehicle. This paper presents a practical vehicle sideslip driving status estimation method that uses ESP (electronic stability program) sensors. ESP sensors such as wheel speed, lateral acceleration, yaw rate and steering wheel angle sensors are used to determine the sideslip driving status and distinguish a banked road. This estimation algorithm contains front-rear sideslip and banked road detection methods. The proposed sideslip estimation algorithm was designed to use the analytical redundancy of these sensors and Lagrange interpolation methods. The performance and effectiveness of the proposed estimation and compensation algorithm were investigated using vehicle tests. This paper presents the results of two cases that were used for the experimental verification: a curved flat road and banked road.  相似文献   

2.
基于扩展卡尔曼滤波的汽车质心侧偏角估计   总被引:4,自引:0,他引:4  
基于二自由度汽车动力学模型和轮胎模型,运用扩展卡尔曼滤波方法建立了汽车质心侧偏角估计器.利用汽车动力学仿真平台,通过仿真对比了线性轮胎模型和非线性轮胎模型的质心侧偏角估计结果.仿真结果表明,轮胎模型对于质心侧偏角估计精度至关重要,而采用非线性轮胎模型能显著提高质心侧偏角估计精度,估计结果能满足ESC控制的要求.  相似文献   

3.
4.
Electric vehicles with individually controlled drivetrains allow torque-vectoring, which improves vehicle safety and drivability. This paper investigates a new approach to the concurrent control of yaw rate and sideslip angle. The proposed controller is a simple single input single output (SISO) yaw rate controller, in which the reference yaw rate depends on the vehicle handling requirements, and the actual sideslip angle. The sideslip contribution enhances safety, as it provides a corrective action in critical situations, e.g., in case of oversteer during extreme cornering on a low friction surface. The proposed controller is experimentally assessed on an electric vehicle demonstrator along two maneuvers on surfaces with significantly varying tire-road friction coefficient. Different longitudinal locations of the sideslip angle used as control variable are compared during the experiments. Results show that: i) the proposed SISO approach provides significant improvements with respect to the vehicle without torque-vectoring, and the controlled vehicle with a reference yaw rate solely based on the handling requirements for high-friction maneuvering; and ii) the control of the rear axle sideslip angle provides better performance than the control of the sideslip angle at the center of gravity.  相似文献   

5.
In this paper, a predictive algorithm for vehicle trajectory control using the vehicle velocity and sideslip angle is proposed. Since the driving state of a vehicle generates nonholonomic constraint equations, it is difficult to control the trajectory with a conventional control algorithm. Furthermore, control vectors such as vehicle velocity and sideslip angle are coupled together; hence, a separate control for each variable is not suitable. In this study, a coupled control vector that combines the velocity and sideslip angle is proposed for the predictive control of vehicle trajectory. Since the coupled control vector is derived from the status of the vehicle’s motion, it is easy to generate a feedback control vector for the predictive controller. The coupled vector cannot be directly used as input to the vehicle systems; therefore, the vehicle input vector should be calculated from the control vector using a nonlinear function. Since nonlinear functions are not inserted in the control loop, they are calculated by the controller. Therefore, this method does not require a linearization process in the control logic, which enhances the stability and accuracy of the predictive controller.  相似文献   

6.
Various active safety systems proposed for articulated heavy goods vehicles (HGVs) require an accurate estimate of vehicle sideslip angle. However in contrast to passenger cars, there has been minimal published research on sideslip estimation for articulated HGVs. State-of-the-art observers, which rely on linear vehicle models, perform poorly when manoeuvring near the limits of tyre adhesion. This paper investigates three nonlinear Kalman filters (KFs) for estimating the tractor sideslip angle of a tractor–semitrailer. These are compared to the current state-of-the-art, through computer simulations and vehicle test data. An unscented KF using a 5 degrees-of-freedom single-track vehicle model with linear adaptive tyres is found to substantially outperform the state-of-the-art linear KF across a range of test manoeuvres on different surfaces, both at constant speed and during emergency braking. Robustness of the observer to parameter uncertainty is also demonstrated.  相似文献   

7.
With the advent of electric vehicles with multiple motors, the steady-state and transient cornering responses can be designed and implemented through the continuous torque control of the individual wheels, i.e., torque-vectoring or direct yaw moment control. The literature includes several papers on sliding mode control theory for torque-vectoring, but the experimental investigation is so far limited. More importantly, to the knowledge of the authors, the experimental comparison of direct yaw moment control based on sliding modes and typical controllers used for stability control in production vehicles is missing. This paper aims to reduce this gap by presenting and analyzing an integral sliding mode controller for concurrent yaw rate and sideslip control. A new driving mode, the Enhanced Sport mode, is proposed, inducing sustained high values of sideslip angle, which can be limited to a specified threshold. The system is experimentally assessed on a four-wheel-drive electric vehicle. The performance of the integral sliding mode controller is compared with that of a linear quadratic regulator during step steer tests. The results show that the integral sliding mode controller significantly enhances the tracking performance and yaw damping compared to the more conventional linear quadratic regulator based on an augmented singletrack vehicle model formulation.  相似文献   

8.
The Vehicle stability control system is an active safety system designed to prevent accidents from occurring and to stabilize dynamic maneuvers of a vehicle by generating an artificial yaw moment using differential brakes. In this paper, in order to enhance vehicle steerability, lateral stability, and roll stability, each reference yaw rate is designed and combined into a target yaw rate depending on the driving situation. A yaw rate controller is designed to track the target yaw rate based on sliding mode control theory. To generate the total yaw moment required from the proposed yaw rate controller, each brake pressure is properly distributed with effective control wheel decision. Estimators are developed to identify the roll angle and body sideslip angle of a vehicle based on the simplified roll dynamics model and parameter adaptation approach. The performance of the proposed vehicle stability control system and estimation algorithms is verified with simulation results and experimental results.  相似文献   

9.
为了提高客车电子稳定性控制系统(ESC)的控制精度,针对实际车辆系统建模中存在各种非线性扰动项以及传统滑模控制(Sliding Mode Control,SMC)中抖振较大的问题,提出一种自适应神经网络滑模控制算法.基于2自由度车辆模型,首先设计一个二阶滑模(Second-order Sliding Mode,SOSM...  相似文献   

10.
This paper presents a method that estimates the vehicle sideslip angle and a tire-road friction coefficient by combining measurements of a magnetometer, a global positioning system (GPS), and an inertial measurement unit (IMU). The estimation algorithm is based on a cascade structure consisting of a sensor fusing framework based on Kalman filters. Several signal conditioning techniques are used to mitigate issues related to different signal characteristics, such as latency and disturbances. The estimated sideslip angle information and a brush tire model are fused in a Kalman filter framework to estimate the tire-road friction coefficient. The performance and practical feasibility of the proposed approach were evaluated through several tests.  相似文献   

11.
Sideslip angle could provide important information concerning vehicle's stability. Unfortunately direct measurement of sideslip angle requires a complex and expensive experimental set-up, which is not suitable for implementation on ordinary passenger cars; thus, this quantity has to be estimated starting from the measurements of vehicle lateral/longitudinal acceleration, speed, yaw rate and steer angle. According to the proposed methodology, sideslip angle is estimated as a weighted mean of the results provided by a kinematic formulation and those obtained through a state observer based on vehicle single-track model. Kinematical formula is considered reliable for a transient manoeuvre, while the state observer is used in nearly quasi-state condition. The basic idea of the work is to make use of the information provided by the kinematic formulation during a transient manoeuvre to update the single-track model parameters (tires cornering stiffnesses). A fuzzy-logic procedure was implemented to identify steady state or transient conditions.  相似文献   

12.
A lateral acceleration is considered to be a significant sensor signal for an estimation of a side slip angle. Due to the fact that a characteristic of a lateral G sensor, the sensor has a technical issue when a road bank angle has presented. In order to resolve the issue, this paper describes a novel method for the real time estimation of a vehicle side slip angle and a road bank angle simultaneously. A Bayesian tracking approach is used to estimate the road bank angle by comparing a measured lateral acceleration with the calculated one in the case of various angle. A Kalman Filter has been implemented through bicycle model using vehicle roll angle, road bank angle and angular velocity of side slip angle. The performance of the proposed estimation method has been evaluated via vehicle tests on a real road.  相似文献   

13.
A four-wheel-independent-steering (4WIS) electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. The fast terminal sliding mode controller (FTSMC) is designed for the SBW system to suppress external disturbances. Taking unstructured and structured uncertainties into consideration, a robust controller is designed for the 4WIS EV utilizing μ synthesis approach and the controller order reduction is implemented based on Hankel-Norm approximation. Since sideslip angle is the feedback signal of robust controller and it is hard to measure, the extended Kalman filter (EKF) is employed to estimate sideslip angle. To evaluate the vehicle performance with the designed control system, step and sinusoidal steering maneuvers are simulated and analyzed. Simulation results show that the designed control system have good tracking ability, strong robust stability and good robust performance to improve vehicle stability and handing performance.  相似文献   

14.
In this paper, a robust sideslip angle controller based on the direct yaw moment control (DYC) is proposed for in-wheel motor electric vehicles. Many studies have demonstrated that the DYC is one of the effective methods to improve vehicle maneuverability and stability. Previous approaches to achieve the DYC used differential braking and active steering system. Not only that, the conventional control systems were commonly dependent on the feedback of the yaw rate. In contrast to the traditional control schemes, however, this paper proposes a novel approach based on sideslip angle feedback without controlling the yaw rate. This is mainly because if the vehicle sideslip angle is controlled properly, the intended sideslip angle helps the vehicle to pass through the corner even at high speed. On the other hand, the vehicle may become unstable because of the too large sideslip caused by unexpected yaw disturbances and model uncertainties of time-varying parameters. From this aspect, disturbance observer (DOB) is employed to assure robust performance of the controller. The proposed controller was realized in CarSim model described actual electric vehicle and verified through computer simulations.  相似文献   

15.
Sideslip angle could provide important information concerning vehicle's stability. Unfortunately direct measurement of sideslip angle requires a complex and expensive experimental set-up, which is not suitable for implementation on ordinary passenger cars; thus, this quantity has to be estimated starting from the measurements of vehicle lateral/longitudinal acceleration, speed, yaw rate and steer angle. According to the proposed methodology, sideslip angle is estimated as a weighted mean of the results provided by a kinematic formulation and those obtained through a state observer based on vehicle single-track model. Kinematical formula is considered reliable for a transient manoeuvre, while the state observer is used in nearly quasi-state condition. The basic idea of the work is to make use of the information provided by the kinematic formulation during a transient manoeuvre to update the single-track model parameters (tires cornering stiffnesses). A fuzzy-logic procedure was implemented to identify steady state or transient conditions.  相似文献   

16.
Summary This paper details a novel method for measuring three key vehicle states – wheel slip, body sideslip angle, and tire sideslip angle – using GPS velocity information in conjunction with other sensors. Based on initial noise data obtained from the system components, a prediction of the accuracy of the angle measurements is obtained. These results demonstrate that the errors due to stochastic noise in the GPS signal are below one degree for meaningful vehicle speeds and approach a tenth of a degree at highway speeds. Hence the limiting factor for measuring these states is not the GPS receiver, but the manner in which other implementation issues – such as bias elimination, off-axis dynamics and dead-reckoning during loss of satellite visibility – are handled. Subsequent experiments validate both the error analysis and the methodology for obtaining the measurements. The experimental results for this preliminary implementation of GPS-based state estimation compare favorably to theoretical predictions, suggesting that this technique has potential for future implementation in vehicle diagnostic and, ultimately, safety systems.  相似文献   

17.
王姝  赵轩  余强  余曼 《中国公路学报》2022,35(1):334-349
为了使双电机驱动电动车在车辆稳定性控制过程中能够精确解读驾驶意图,使车辆实际行驶状态与驾驶意图期望的车辆行驶状态尽可能相符合,提出一种基于驾驶人意图辨识的稳定性控制策略.利用基于支持向量机递归特征消除(SVM-RFE)得到的特征参数构建基于长短期记忆(LSTM)模型的驾驶人转向意图辨识模型;基于转向意图识别结果,以方向...  相似文献   

18.
SUMMARY

This paper derives a method of controlling four wheel steering using optimal control theory. The purpose of control is to minimize the sideslip angle at the center of gravity. The control method feeds forward the steering wheel angle and feeds back the yaw velocity and the sideslip angle to the front and rear wheel angles. Theoretical studies show that the sideslip angle is reduced to zero even in the transient state, and that the understeer characteristic and frequency response can be changed regardless of the vehicle static margin. This Paper also examines various characteristics of the influence of the side force nonlinearities of tires and crosswinds.  相似文献   

19.
In this work, the reference model modification strategy for vehicle stability control based on driver's intention recognition under emergent obstacle avoidance situation was proposed. First the conflicts between the driver's emergency alignment (EA) intention and vehicle response characteristics were analyzed in critical emergent obstacle avoidance situation. Second combining steering wheel angle and its speed, the driver's EA intention was recognized. The reference model modification strategy based on steering operation index (SOI) was presented. Then a LQR model following controller with tire cornering stiffness adaption was used to generate direct yaw moment for tracking modified reference yaw rate and reference sideslip angle. Finally based on the four-in-wheel-motor-drive (FIWMD) electric vehicles (EV), double lane change and slalom tests were conducted to compare the results using modified reference model with the results using normal reference model. The experimental tests have proved the effectiveness of the reference model modification strategy based on driver's intention recognition.  相似文献   

20.
This article seeks to develop a longitudinal vehicle velocity estimator robust to road conditions by employing a tyre model at each corner. Combining the lumped LuGre tyre model and the vehicle kinematics, the tyres internal deflection state is used to gain an accurate estimation. Conventional kinematic-based velocity estimators use acceleration measurements, without correction with the tyre forces. However, this results in inaccurate velocity estimation because of sensor uncertainties which should be handled with another measurement such as tyre forces that depend on unknown road friction. The new Kalman-based observer in this paper addresses this issue by considering tyre nonlinearities with a minimum number of required tyre parameters and the road condition as uncertainty. Longitudinal forces obtained by the unscented Kalman filter on the wheel dynamics is employed as an observation for the Kalman-based velocity estimator at each corner. The stability of the proposed time-varying estimator is investigated and its performance is examined experimentally in several tests and on different road surface frictions. Road experiments and simulation results show the accuracy and robustness of the proposed approach in estimating longitudinal speed for ground vehicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号