共查询到20条相似文献,搜索用时 15 毫秒
1.
Mirko Čorić Joško Deur Josip Kasać H. Eric Tseng Davor Hrovat 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(11):1574-1600
Active suspension is commonly considered under the framework of vertical vehicle dynamics control aimed at improvements in ride comfort. This paper uses a collocation-type control variable optimisation tool to investigate to which extent the fully active suspension (FAS) application can be broaden to the task of vehicle handling/cornering control. The optimisation approach is firstly applied to solely FAS actuator configurations and three types of double lane-change manoeuvres. The obtained optimisation results are used to gain insights into different control mechanisms that are used by FAS to improve the handling performance in terms of path following error reduction. For the same manoeuvres the FAS performance is compared with the performance of different active steering and active differential actuators. The optimisation study is finally extended to combined FAS and active front- and/or rear-steering configurations to investigate if they can use their complementary control authorities (over the vertical and lateral vehicle dynamics, respectively) to further improve the handling performance. 相似文献
2.
《JSAE Review》2002,23(3):309-315
This study proposes a control system to improve vehicle handling and stability under severe driving conditions by actively controlling the front steering angle and the distribution of braking forces on four tires. With the application of a model-matching control technique, this proposed control system makes the performance of the actual vehicle model follow that of an ideal vehicle model with consideration of nonlinearity of tire characteristics. Finally, this paper investigates the effectiveness of control system during the following conditions: braked cornering, lane change and side wind disturbance. 相似文献
3.
J. Kim 《International Journal of Automotive Technology》2008,9(6):687-693
In this article, the analysis methods for vehicle handling performance are studied. Using simple models, dynamic characteristic
parameters such as yaw, natural frequency, and the damping coefficient of a vehicle can be theoretically formulated. Here,
the vehicle is simplified by a bicycle (single-track) model, and the tire is modeled by an equivalent cornering stiffness
and first order lag. From the experimental road data, the tire model parameters (equivalent cornering stiffness and time lag
constant) are extracted. These parameters are then inserted into the theoretically formulated equations of dynamic characteristic
parameters. For the purpose of validating the efficiency of the suggested methods, experimental road tests (where the cars
have different handling performances) are performed. The results show that vehicle handling performance can be sufficiently
represented by the suggested dynamic characteristic parameters. So, it is concluded that the proposed method has practical
use for the development of new cars or for the comparison of similar cars since the evaluations of the vehicle handling performance
can be efficiently determined by the suggested dynamic characteristic parameters. 相似文献
4.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(10):1494-1529
ABSTRACTIn this paper, a coordinated control strategy is proposed to provide an effective improvement in handling stability of the vehicle, safety, and comfortable ride for passengers. This control strategy is based on the coordination among active steering, differential braking, and active suspension systems. Two families of controllers are used for this purpose, which are the high order sliding mode and the backstepping controllers. The control strategy was tested on a full nonlinear vehicle model in the environment of MATLAB/Simulink. Rollover avoidance and yaw stability control constraints have been considered. The control system mainly focuses on yaw stability control. When rollover risk is detected, the proposed strategy controls the roll dynamics to decrease rollover propensity. Simulation results for two different critical driving scenarios, the first one is a double lane change and the other one is a J-turn manoeuvre, show the effectiveness of the coordination strategy in stabilising the vehicle, enhancing handling and reducing rollover propensity. 相似文献
5.
6.
Jing Zhao Xinbo Ma Zhengchao Xie 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(1):72-103
This paper proposes a novel integrated controller with three-layer hierarchical structure to coordinate the interactions among active suspension system (ASS), active front steering (AFS) and direct yaw moment control (DYC). First of all, a 14-degree-of-freedom nonlinear vehicle dynamic model is constructed. Then, an upper layer is designed to calculate the total corrected moment for ASS and intermediate layer based on linear moment distribution. By considering the working regions of the AFS and DYC, the intermediate layer is functionalised to determine the trigger signal for the lower layer with corresponding weights. The lower layer is utilised to separately trace the desired value of each local controller and achieve the local control objectives of each subsystem. Simulation results show that the proposed three-layer hierarchical structure is effective in handling the working region of the AFS and DYC, while the quasi-experimental result shows that the proposed integrated controller is able to improve the lateral and vertical dynamics of the vehicle effectively as compared with a conventional electronic stability controller. 相似文献
7.
This paper describes an optimum distribution method for yaw moment for use with unified chassis control (UCC) with limitations
on the active front steering (AFS) angle. Although the UCC has been assumed to have no AFS angle limitation in the literature,
a physical limitation exists in real applications. To improve upon the previous method, a new optimum distribution method
for yaw moment is proposed that takes this limitation into account. This method derives an optimum longitudinal/lateral force
using the Karush-Kuhn-Tucker (KKT) optimality condition, and a simulation is performed to validate the proposed method. The
simulation results indicate that the limitation on the AFS angle increases longitudinal braking force and, therefore, reduces
the vehicle speed and the side-slip angle. 相似文献
8.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(10):1193-1213
In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces. 相似文献
9.
10.
《JSAE Review》1999,20(4):499-504
This paper addresses the effects of field of view on lateral control performance in a vision-based autonomous vehicle with simulation studies. When a vehicle drives around a circle with the lateral control algorithm proposed here, the performance is evaluated for a tracking error and ride quality for locations and sizes of the field of view. The results show that a field of view covering from 10 to 30 m in front of a vehicle is the optimal with respect to both the error and the ride quality, and it is independent of the vehicle speed. 相似文献
11.
12.
In this paper, evolving Takagi-Sugeno (eTS) fuzzy driver model is proposed for simultaneous lateral and longitudinal control of a vehicle in a test track closed to traffic. The developed eTS fuzzy driver model can capture human operator’s driving expertise for generating desired steering angle, throttle angle and brake pedal command values by processing only information which can be supplied by the vehicle’s on-board control systems in real time. Apart from other fuzzy rule based (FRB) models requiring human expert knowledge or off-line clustering, the developed eTS driver model can adapt itself automatically, even ‘from scratch’, by an on-line learning process using eTS algorithm while human driver is supervising the vehicle. Proposed eTS fuzzy driver model’s on-line human driver identification capability and autonomous vehicle driving performance were evaluated on real road profiles created by digitizing two different intercity express ways of Turkey in IPG© CarMaker® software. The training and validation simulation results demonstrated that eTS fuzzy driver model can be used in product development phase to speed up different tests via realistic simulations. Furthermore eTS fuzzy driver model has an application potential in the field of autonomous driving. 相似文献
13.
Mirko Čorić Joško Deur Li Xu H. Eric Tseng Davor Hrovat 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(7):1004-1030
A collocation-type control variable optimisation method is used in the paper to analyse to which extent the fully active suspension (FAS) can improve the vehicle ride comfort while preserving the wheel holding ability. The method is first applied for a cosine-shaped bump road disturbance of different heights, and for both quarter-car and full 10 degree-of-freedom vehicle models. A nonlinear anti-wheel hop constraint is considered, and the influence of bump preview time period is analysed. The analysis is then extended to the case of square- or cosine-shaped pothole with different lengths, and the quarter-car model. In this case, the cost function is extended with FAS energy consumption and wheel damage resilience costs. The FAS action is found to be such to provide a wheel hop over the pothole, in order to avoid or minimise the damage at the pothole trailing edge. In the case of long pothole, when the FAS cannot provide the wheel hop, the wheel is travelling over the pothole bottom and then hops over the pothole trailing edge. The numerical optimisation results are accompanied by a simplified algebraic analysis. 相似文献
14.
Mirko Čorić Joško Deur Li Xu H. Eric Tseng Davor Hrovat 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2018,56(1):1-26
A collocation-type control variable optimisation method is used to investigate the extent to which the fully active suspension (FAS) can be applied to improve the vehicle electronic stability control (ESC) performance and reduce the braking distance. First, the optimisation approach is applied to the scenario of vehicle stabilisation during the sine-with-dwell manoeuvre. The results are used to provide insights into different FAS control mechanisms for vehicle performance improvements related to responsiveness and yaw rate error reduction indices. The FAS control performance is compared to performances of the standard ESC system, optimal active brake system and combined FAS and ESC configuration. Second, the optimisation approach is employed to the task of FAS-based braking distance reduction for straight-line vehicle motion. Here, the scenarios of uniform and longitudinally or laterally non-uniform tyre–road friction coefficient are considered. The influences of limited anti-lock braking system (ABS) actuator bandwidth and limit-cycle ABS behaviour are also analysed. The optimisation results indicate that the FAS can provide competitive stabilisation performance and improved agility when compared to the ESC system, and that it can reduce the braking distance by up to 5% for distinctively non-uniform friction conditions. 相似文献
15.
Eunjae Lee Jonghyup Lee 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(2):231-243
The cornering force and lateral static characteristics of a tyre are fundamental factors that describe the steering feel for handling performance. However, it is difficult to justify the contribution of each factor when the tyre’s cornering motion is evaluated through subjective assessment. Currently, the relaxation length of Pacejka’s tyre model is close to describing these tyre motions. Therefore, this paper proposes a string tyre model based on the relaxation length in order to represent the steering performance. The proposed method provides a more accurate modelling of the steering agility performance. Therefore, it is possible to use this model to predict the steering response performance, and this is validated through comparison with a real relaxation length. 相似文献
16.
《JSAE Review》1999,20(3):343-348
The current method for solving the problem of active suspension control for a vehicle often uses a quarter car or a half car model. This kind of model is not suitable for practical applications. In this paper, based on considering the influence of factors such as the engine, seat and passengers, a MDOF (multi-degree-of-freedom model) describing the vehicle motion has been set up, and a controller for this model is designed by using LQ control theory. Furthermore the appropriate control scheme is selected by testing various performance indexes. 相似文献
17.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(12):1949-1970
A steering-based controller for improving lateral performance of longer combination vehicles (LCVs) is proposed. The controller steers the axles of the towed units to regulate the time span between the driver steering and generation of tyre lateral forces at the towed units and consequently reduces the yaw rate rearward amplification (RWA) and offtracking. The open-loop effectiveness of the controller is evaluated with simulations and its closed loop or driver in the loop effectiveness is verified on a test track with a truck–dolly–semitrailer test vehicle in a series of single- and double-lane change manoeuvres. The developed controller reduces the yaw rate RWA and offtracking considerably without diminishing the manoeuvrability. Furthermore, as a byproduct, it decreases the lateral acceleration RWA moderately. The obtained safety improvements by the proposed controller can promote the use of LCVs in traffic which will result in the reduction of congestion problem as well as environmental and economic benefits. 相似文献
18.
I. Youn M. A. Khan N. Uddin E. Youn M. Tomizuka 《International Journal of Automotive Technology》2017,18(2):307-316
This research investigates stochastic estimation of a look-ahead sensor scheme using the optimal preview control for an active suspension system of a full tracked vehicle (FTV). In this scheme, wheel disturbance input to the front wheels are estimated using the dynamic equations of the system. The estimated road disturbance input at the front wheels are utilized as preview information for the control of subsequently following wheels of FTV. The design of optimal preview control is used as a classical linear quadratic Gaussian problem by combining dynamics of the original system and estimation of previewed road inputs. The effectiveness of the preview controller is evaluated by comparing the estimated information with the measured information for different road profiles, where Kalman filter is used for the state-variables estimation of the FTV. This research also considers the reduced order estimation using commonly available sensors in order to decrease the number of sensors and measurements. The simulation results’ using an active suspension system with different preview information shows that the proposed system can be beneficial for the improvement of ride comfort of tracked vehicles without using any specialized sensors for preview information calculation. 相似文献
19.
The perspectives of research for enhancing active safety based on advanced control technology 总被引:1,自引:0,他引:1
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2007,45(5):413-431
This paper considers the scope and the methodologies for enhancing active safety of road vehicles by sensing and control technologies. The first part of this paper introduces statistical data of traffic accidents in Japan, and describes the development of the drive recorder for accident/incident survey and analysis. Based on vehicle dynamics data, the algorithm of the drive recorder for capturing near-miss incident data is introduced. The second part of this paper reviews control problems of vehicle dynamics on micro-scale electric vehicles for enhancing vehicle dynamics and driving assistance function. In particular, the direct yaw moment control using in-wheel-motors and the active front steering control algorithm are described. The third part of the paper introduces the advanced driver assistance system adapted to driver characteristics and traffic situations. This part mainly describes an adaptive system, which adjusts the assisting manoeuvre depending on individual driver behaviour and situation, and some experimental investigations using the active interface vehicle and driving simulator. Finally, some perspectives and new challenges for future research on vehicle control technology are mentioned. 相似文献