首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The Vehicle stability control system is an active safety system designed to prevent accidents from occurring and to stabilize dynamic maneuvers of a vehicle by generating an artificial yaw moment using differential brakes. In this paper, in order to enhance vehicle steerability, lateral stability, and roll stability, each reference yaw rate is designed and combined into a target yaw rate depending on the driving situation. A yaw rate controller is designed to track the target yaw rate based on sliding mode control theory. To generate the total yaw moment required from the proposed yaw rate controller, each brake pressure is properly distributed with effective control wheel decision. Estimators are developed to identify the roll angle and body sideslip angle of a vehicle based on the simplified roll dynamics model and parameter adaptation approach. The performance of the proposed vehicle stability control system and estimation algorithms is verified with simulation results and experimental results.  相似文献   

2.
This paper describes a drive controller designed to improve the lateral vehicle stability and maneuverability of a 6-wheel drive / 6-wheel steering (6WD/6WS) vehicle. The drive controller consists of upper and lower level controllers. The upper level controller is based on sliding control theory and determines both front and middle steering angle, additional net yaw moment, and longitudinal net force according to the reference velocity and steering angle of a manual drive, remotely controlled, autonomous controller. The lower level controller takes the desired longitudinal net force, yaw moment, and tire force information as inputs and determines the additional front steering angle and distributed longitudinal tire force on each wheel. This controller is based on optimal distribution control and takes into consideration the friction circle related to the vertical tire force and friction coefficient acting on the road and tire. Distributed longitudinal/lateral tire forces are determined as proportion to the size of the friction circle according to changes in driving conditions. The response of the 6WD/6WS vehicle implemented with this drive controller has been evaluated via computer simulations conducted using the Matlab/Simulink dynamic model. Computer simulations of an open loop under turning conditions and a closed-loop driver model subjected to double lane change have been conducted to demonstrate the improved performance of the proposed drive controller over that of a conventional DYC.  相似文献   

3.
The stability driving characteristic and the tire wear of 8-axle vehicle with 16-independent driving wheels are discussed in this paper. The lateral stability of 8-axle vehicle can be improved by the direct yaw moment which is generated by the 16 independent driving wheels. The hierarchical controller is designed to determine the required yaw torque and driving force of each wheel. The upper level controller uses feed-forward and feed-backward control theory to obtain the required yaw torque. The fuzzification weight ratio of two control objective is built in the upper level controller to regulate the vehicle yaw and lateral motions. The rule-based yaw moment distribution strategy and the driving force adjustment based on the safety of vehicle are proposed in the lower level controller. The influence of rear steering angle is considered in the distribution of driving force of the wheel. Simulation results of a vehicle double lane change show the stability of 8-axle vehicle under the proposed control algorithm. The wear rate of tire is calculated by the interaction force between the tire and ground. The wear of tire is different from each other for the vehicle with the stability controller or not.  相似文献   

4.
王伟  肖泽艳 《天津汽车》2010,(12):22-26
为提高车辆的横向稳定性,获得良好的操纵性能,利用ADAMS/car和MATLAB/simulink建立了以横摆角速度和质心侧偏角为控制变量的多级PID仿真模型,分别采用了单个车轮制动和单侧车轮制动产生附加横摆力矩的方式.通过蛇形试验验证了ESP控制器的有效性和对比了2种制动方式的控制效果.仿真试验表明:采用该ESP控制器可以很好地保持车辆的稳定性,采用单侧车轮制动产生附加横摆力矩的方式具有更快的控制速度和更好的控制效果.  相似文献   

5.
There are basically two methods to control yaw moment which is the most efficient way to improve vehicle stability and handling. The first method is indirect yaw moment control, which works based on control of the lateral tire force through steering angle control. It is mainly known as active steering control (ASC). Nowadays, the most practical approach to steering control is active front steering (AFS). The other method is direct yaw moment control (DYC), in which an unequal distribution of longitudinal tire forces (mainly braking forces) produces a compensating external yaw moment. It is well known that the AFS performance is limited in the non-linear vehicle handling region. On the other hand, in spite of a good performance of DYC in both the linear and non-linear vehicle handling regions, continued DYC activation could lead to uncomfortable driving conditions and an increase in the stopping distance in the case of emergency braking. It is recommended that DYC be used only in high-g critical maneuvers. In this paper, an integrated fuzzy/optimal AFS/DYC controller has been designed. The control system includes five individual optimal LQR control strategies; each one, has been designed for a specific driving condition. The strategies can cover low, medium, and high lateral acceleration maneuvers on high-μ or low-μ roads. A fuzzy blending logic also has been utilized to mange each LQR control strategy contribution level in the final control action. The simulation results show the advantages of the proposed control system over the individual AFS or DYC controllers.  相似文献   

6.
The function of vehicle dynamics control system is adjusting the yaw moment, the longitudinal force and lateral force of a vehicle body through several chassis systems, such as brakes, steering and suspension. Individual systems such as ESC, AFS and 4WD can be used to achieve desired performance by controlling actuator variables. However, integrated chassis control systems that have multiple objectives may not simply achieve the desired performance by controlling the actuators directly. Usually those systems determine the required tire forces in an upper level controller and a lower level controller regulates the tire forces through the actuators. The tire force is controlled in a recursive way based on vehicle state measurement, which may not be sufficient for fast response. For immediate force tracking, we introduce a direct tire force generation method that uses a nonlinear inverse tire model, a pseudo-inverse model of vehicle dynamics and the relationship between longitudinal force and brake pressure.  相似文献   

7.
This paper describes an optimum distribution method for yaw moment for use with unified chassis control (UCC) with limitations on the active front steering (AFS) angle. Although the UCC has been assumed to have no AFS angle limitation in the literature, a physical limitation exists in real applications. To improve upon the previous method, a new optimum distribution method for yaw moment is proposed that takes this limitation into account. This method derives an optimum longitudinal/lateral force using the Karush-Kuhn-Tucker (KKT) optimality condition, and a simulation is performed to validate the proposed method. The simulation results indicate that the limitation on the AFS angle increases longitudinal braking force and, therefore, reduces the vehicle speed and the side-slip angle.  相似文献   

8.
This paper presents a lateral driver model for vehicle–driver closed-loop simulation at the limits of handling. An appropriate driver model can be used to evaluate the performance of vehicle chassis control systems via computer simulations before vehicle tests which incurs expenses especially at the limits of handling. The driver model consists of two parts. The first part is an upper-level controller employing force-based approach to reduce the number of unknown vehicle parameters. The feedforward part of the upper controller has been designed by using the centre of percussion. The feedback part aims to minimise ‘tangential error’, defined as the sum of body slip angle and yaw error, to match vehicle direction and road heading angle. The part is designed to regenerate an appropriate skid motion similar to that of a professional driver at the limits. The second part is a lower-level controller which converts the desired front lateral force to steering wheel angle. The lower-level controller also consists of feedforward and feedback parts. A two-degree-of-freedom bicycle model-based feedforward part provides nominal steering wheel angle, and the feedback part aims to eliminate unmodelled error. The performance of the lateral driver model has been investigated via computer simulations. It has been shown that the steering behaviours of the proposed driver model are quite close to those of a professional driver at the limits. Compared with the previously developed lateral driver models, the proposed lateral driver model shows good tracking performance at the limits of handling.  相似文献   

9.
This article suggests a new methodology for the objective assessment and quantification of the response of a vehicle subjected to transient-handling manoeuvres. For this purpose, a non-dimensional measure is defined, namely the normalized yaw impulse. This measure appears in two variations. In its general or dynamic form, it represents the difference between the yaw moment due to the front-tyre forces and the yaw moment due to the rear-tyre forces, divided by the sum of the aforementioned yaw moments. By employing a linear, two-degree-of-freedom bicycle model, it is shown that the general form of the normalized yaw impulse can be written as a function of the steer angle and the forward, lateral and yaw velocities of the vehicle. This form is referred to as the kinematic yaw impulse. It is demonstrated that the combined application of the dynamic and kinematic expressions of the yaw impulse not only facilitates the explicit assessment and quantification of the transient behaviour of a vehicle, but also reveals the influence of parameters such as the yaw moment of inertia, which traditionally leave the steady-state behaviour unaffected.  相似文献   

10.
This article suggests a new methodology for the objective assessment and quantification of the response of a vehicle subjected to transient-handling manoeuvres. For this purpose, a non-dimensional measure is defined, namely the normalized yaw impulse. This measure appears in two variations. In its general or dynamic form, it represents the difference between the yaw moment due to the front-tyre forces and the yaw moment due to the rear-tyre forces, divided by the sum of the aforementioned yaw moments. By employing a linear, two-degree-of-freedom bicycle model, it is shown that the general form of the normalized yaw impulse can be written as a function of the steer angle and the forward, lateral and yaw velocities of the vehicle. This form is referred to as the kinematic yaw impulse. It is demonstrated that the combined application of the dynamic and kinematic expressions of the yaw impulse not only facilitates the explicit assessment and quantification of the transient behaviour of a vehicle, but also reveals the influence of parameters such as the yaw moment of inertia, which traditionally leave the steady-state behaviour unaffected.  相似文献   

11.
为了提高四轮独立驱动智能电动汽车在变曲率弯道下的轨迹跟踪精度和横摆稳定性,提出了一种模型预测控制与直接横摆力矩控制协同的综合控制方法。建立了横纵向耦合的车辆动力学模型,采用2阶龙格库塔离散法保证了离散模型的精度,并基于简化的2自由度动力学模型推导了车辆横摆稳定性约束,设计了非线性模型预测控制器;利用直接横摆力矩控制能够改变车辆横摆角速度和航向角的特点,考虑模型预测控制器的预测状态、控制量以及跟踪误差,设计了协同控制规则。仿真结果表明,协同控制方法解决了考虑横摆稳定性约束的模型预测控制器中存在的稳定性约束与控制精度相矛盾的问题,并补偿了模型预测控制器没有可行解时对横摆稳定性的约束,同时提高了智能汽车的轨迹跟踪精度和横摆稳定性。  相似文献   

12.
Summary This paper presents an emergency obstacle avoidance control strategy that may be used in automated highway vehicles. In the proposed control strategy, an inverse vehicle dynamics problem is solved on the selected emergency lane-change path to find out the nominal feedforward control inputs such as the steering wheel angle and the braking force. Then the overall vehicle lateral and yaw motion is controlled additionally in the feedback path by an active yaw moment for stability augmentation as well as a corrective steering angle that is added to the nominal steering angle in order to compensate for uncertainties involved in the nominal control input computation. The proposed control strategy has been tested by an ABS Hardware-In-the-Loop Simulation (HILS) system for rapid and safe control prototyping in a lab. Simulation results with a sample emergency avoidance distance (45 m) show that the proposed control strategy may be used as a feasible obstacle avoidance strategy for automated highway vehicles.  相似文献   

13.
Summary This paper presents an emergency obstacle avoidance control strategy that may be used in automated highway vehicles. In the proposed control strategy, an inverse vehicle dynamics problem is solved on the selected emergency lane-change path to find out the nominal feedforward control inputs such as the steering wheel angle and the braking force. Then the overall vehicle lateral and yaw motion is controlled additionally in the feedback path by an active yaw moment for stability augmentation as well as a corrective steering angle that is added to the nominal steering angle in order to compensate for uncertainties involved in the nominal control input computation. The proposed control strategy has been tested by an ABS Hardware-In-the-Loop Simulation (HILS) system for rapid and safe control prototyping in a lab. Simulation results with a sample emergency avoidance distance (45 m) show that the proposed control strategy may be used as a feasible obstacle avoidance strategy for automated highway vehicles.  相似文献   

14.
An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

15.
SUMMARY

An integrated control system of active rear wheel steering (4WS) and direct yaw moment control (DYC) is presented in this paper. Because of the tire nonlinearity that is mainly due to the saturation of cornering forces, vehicle handling performance is improved but limited to a certain extent only by steering control. Direct yaw moment control using braking and/or driving forces is effective not only in linear but also nonlinear ranges of tire friction circle. The proposed control system is a model matching controller which makes the vehicle follow the desired dynamic model by the state feedback of both yaw rate and side slip angle. Various computer simulations are carried out and show that vehicle handling performance is much improved by the integrated control system.  相似文献   

16.
An innovative structure for a heavy haul coupler with an arc surface contact and restoring bumpstop is proposed. This coupler has a small lateral force at a small yaw angle and a limitable yaw angle to ensure an allowable coupler lateral force under intense compressive force. The main structural characteristic of the combined contact coupler is a lateral movable follower with an appropriate friction coefficient of 0.06–0.08 and a slide block with a single freedom of longitudinal movement. In order to verify and simulate the performances, a multi-body dynamics model with four heavy haul locomotives and three detailed couplers was established to simulate the process of emergency braking. In addition, the coupler yaw instability and wheel set lateral forces were tested in order to investigate the effect of relevant parameters on the coupler performances. The combined contact coupler is suitable for heavy haul train for a good dynamic performance.  相似文献   

17.
The integrated longitudinal and lateral dynamic motion control is important for four wheel independent drive (4WID) electric vehicles. Under critical driving conditions, direct yaw moment control (DYC) has been proved as effective for vehicle handling stability and maneuverability by implementing optimized torque distribution of each wheel, especially with independent wheel drive electric vehicles. The intended vehicle path upon driver steering input is heavily depending on the instantaneous vehicle speed, body side slip and yaw rate of a vehicle, which can directly affect the steering effort of driver. In this paper, we propose a dynamic curvature controller (DCC) by applying a the dynamic curvature of the path, derived from vehicle dynamic state variables; yaw rate, side slip angle, and speed of a vehicle. The proposed controller, combined with DYC and wheel longitudinal slip control, is to utilize the dynamic curvature as a target control parameter for a feedback, avoiding estimating the vehicle side-slip angle. The effectiveness of the proposed controller, in view of stability and improved handling, has been validated with numerical simulations and a series of experiments during cornering engaging a disturbance torque driven by two rear independent in-wheel motors of a 4WD micro electric vehicle.  相似文献   

18.
Dynamic game theory brings together different features that are keys to many situations in control design: optimisation behaviour, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degrees-of-freedom vehicle-handling performance model is put into discrete form to develop the game equations of motion. To evaluate the developed control algorithm, CarSim with its built-in nonlinear vehicle model along with the Pacejka tire model is used. The control algorithm is evaluated for a lane change manoeuvre, and the optimal set of steering angle and corrective yaw moment is calculated and fed to the test vehicle. Simulation results show that the optimal preview control algorithm can significantly reduce lateral velocity, yaw rate, and roll angle, which all contribute to enhancing vehicle stability.  相似文献   

19.
The brake and steering systems in vehicles are the most effective actuators that directly affect the vehicle dynamics. In general, the brake system affects the longitudinal dynamics and the steering system affects the lateral dynamics; however, their effects are coupled when the vehicle is braking on a non-homogenous surface, such as a split-mu road. The yaw moment compensation of the steering control on a split-mu road is one of the basic functions of integrated or coordinated chassis control systems and has been demonstrated by several chassis suppliers. However, the disturbance yaw moment is generally compensated for using the yaw rate feedback or using wheel brake pressure measurement. Access to the wheel brake pressure through physical sensors is not cost effective; therefore, we modeled the hydraulic brake system to avoid using physical sensors and to estimate the brake pressure. The steering angle controller was designed to mitigate the non-symmetric braking force effect and to stabilize the yaw rate dynamics of the vehicle. An H-infinity design synthesis was used to take the system model and the estimation errors into account, and the designed controller was evaluated using vehicle tests.  相似文献   

20.
In this paper, a robust sideslip angle controller based on the direct yaw moment control (DYC) is proposed for in-wheel motor electric vehicles. Many studies have demonstrated that the DYC is one of the effective methods to improve vehicle maneuverability and stability. Previous approaches to achieve the DYC used differential braking and active steering system. Not only that, the conventional control systems were commonly dependent on the feedback of the yaw rate. In contrast to the traditional control schemes, however, this paper proposes a novel approach based on sideslip angle feedback without controlling the yaw rate. This is mainly because if the vehicle sideslip angle is controlled properly, the intended sideslip angle helps the vehicle to pass through the corner even at high speed. On the other hand, the vehicle may become unstable because of the too large sideslip caused by unexpected yaw disturbances and model uncertainties of time-varying parameters. From this aspect, disturbance observer (DOB) is employed to assure robust performance of the controller. The proposed controller was realized in CarSim model described actual electric vehicle and verified through computer simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号