首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
城市道路交通流预测的可靠性、实时性是城市交通管理与控制的基础. 为提高城市道路交通流的预测能力,提出了可变元胞传输模型(VCTM模型). 在分析元胞传输模型(CTM模型)在城市道路交通流预测方面应用不足的基础上,根据流量守恒定律,将元胞的交通流密度和元胞的长度两个参数引入CTM模型,建立了VCTM模型. VCTM模型根据路段连接、汇聚、分流等三种形式的不同特点,分别建立了元胞连接、汇聚、分流的交通流传输公式. 虽然VCTM模型引入了元胞的交通流密度和元胞的长度两个参数,增加了模型求解的运算量,但克服了元胞长度必须相等的局限性,确保VCTM模型可以应用于城市路网中的不同道路. 仿真结果表明,VCTM模型能够满足城市道路交通流预测的要求.  相似文献   

2.
交通事件在高速公路上经常发生,其时间与空间上的不确定性,以及对上游路段和相邻国省道带来的动态衍生影响,使得提前制订具有针对性的预案难度很大.如何快速预测交通事件的影响范围以及交通管控措施的实施效果,成为高速公路应急处置管理的基础.提出基于交通需求预测与元胞传输模型相结合的技术,首先通过卡尔曼滤波算法估计和预测交通需求矩阵,并将上述交通需求加载在元胞传输仿真模型中模拟未来路网的交通运行状态,用于实时、快速预测交通事件发生后未来短时的交通拥堵发展态势.基于该技术,开发了公路网交通运行状态预测系统,通过实际数据的测试,证明该系统在公路网交通事件影响范围预测方面具有良好的精度,并且预测精度随着路网基础交通量的增大而提高.  相似文献   

3.
随着高速公路建设速度的加快,引发了诸如交通安全、交通拥堵、环境污染等一系列衍生问题.高速公路实时网络状态的获知就是减少拥堵延迟、保障高速公路快捷通畅的方法之一,但是由于基础数据获取的渠道还比较单一,因此在高速公路网络状态估计方面还缺乏科学的指导.本文利用高速公路进出口收费站数据,通过统计技术得到路网的OD量,在改进中观交通仿真模型的基础上,采用仿真手段将动态OD进行网络加载,从而产生实时的高速公路全路网无缝覆盖的网络状态估计.通过真实的山东省域高速公路全网络进行例证,结果表明,本文方法可以比较准确地估计出实时的网络状态,可以得到网络中任意路段的交通流速度、密度、流量等信息,可以为高速公路管理部门发布动态诱导信息、规划检测器设置等提供参考和帮助.  相似文献   

4.
为了更准确地描述城市道路交叉口交通流演化规律,以具有进口道展宽设计和合用车道功能设计的信号控制交叉口为研究对象,综合考虑排队消散过程、分流过程、可选择性换道和合用车道4个现实因素改进了元胞传输模型(CTM);结合交叉口的几何特征,以车道组为单位提出了路段元胞划分方法;在此基础上,调整了元胞发送能力函数对排队的消散过程,并进行了建模;在分流过程建模中引入阻塞因子来描述不同车道组空间排队的相互影响,以平衡相邻车道组空间排队为目标对过渡区可选择性换道行为进行了建模,并在合用车道建模中考虑了不同流向车流的冲突效应;结合实际交叉口,选取车道组周期最大排队长度作为评价指标,验证了改进CTM的有效性。试验结果表明:改进CTM可以同时估计不同车道组的排队长度,随着直行车流比例的增大,改进CTM的估计误差逐渐减小,不同流量场景下,路段最大排队长度的平均绝对误差(MAE)、均方根误差(RMSE)和加权平均绝对百分比误差(WMAPE)的平均值分别小于16.43、21.36 m和13.51%;与基准方法相比,不同场景下改进CTM对路段最大排队长度的MAE的减小幅度为15.31%~90.03%,且在高流量场景下...  相似文献   

5.
为使元胞传输模型(Cell Transmission Model,CTM)适用于城市道路环境下的交通流仿真,以流量守恒定律和宏观基本图为基础,推导出使用交通流密度描述元胞动态特征的迭代公式,克服了基本CTM中所有元胞长度必须相等的局限性.同时提出了基于车道功能和信号相位的进出口路段和交叉口内部的元胞划分方法,并根据停车线处的放行流率动态调整受信号控制元胞的发送流率,由此提出了考虑信号控制的改进CTM.最后,分别使用该CTM和VISSIM软件对一个包含2个交叉口的城市道路进行仿真,并对比分析输出结果.实验表明,两者输出的交通流密度曲线吻合度高,对信号控制交叉口交通流的排队和消散特征的描述十分接近,与此同时,改进CTM显著地减小了计算开销和用时.  相似文献   

6.
为解决实时交通仿真系统对计算效率的要求,本文提出一种针对交通信号控制下城市道路路段的元胞自动机模型。在模型中采取了适合城市交通特点的元胞空间划分和时间步长方案以及元胞更新规则。本文还给出基于此模型的一个小型仿真系统的软件体系结构。另外,本模型还能反应出驾驶员的进取性(aggressiveness)的状况,并对驾驶员存不同进取性下对变通的影响做了研究。通过现场采集的交通数据和CORSIM仿真平行的对比试验表明本文提出的模型在路段平均速度意义下与实际变通数据符合较好,并具有较高的运行效率。  相似文献   

7.
基于元胞传输模型的交通事件消散建模   总被引:3,自引:0,他引:3  
介绍了元胞传输模型(CTM)的基本原理,并建立了交通事件消散时间的元胞传输模型。分析了上海市城市某段快速路交通事件发生位置处拥挤波的产生与消散,并对此问题用元胞传输模型建模并进行仿真计算。仿真结果表明,事件发生的上游形成拥挤区并慢慢向上游传递;事件清除后,拥挤波的消散较慢并会蔓延较长的距离,其消散也需要较长的时间。因此,有效的交通管理对缓解交通拥堵,减少交通延误有着重要的意义。  相似文献   

8.
基于智能体与元胞自动机的智能交通仿真   总被引:11,自引:1,他引:10  
针对智能体和元胞自动机在交通仿真研究中应用的相对独立现状,分析了智能体和元胞自动机理论方法在交通仿真研究和应用中的特性及各自存在的局限性和优势。指出两者都具有“由底向上”的设计特点,智能体能准确地描述各种复杂交通元素的特性和自主行为,但实现复杂,效率较低,而元胞自动机方法实现简单,仿真效率高,但难以体现交通元素的个体差异。探讨了这两种方法相结合进行智能交通仿真的可行性,以及它们的结合点和结合方法,构建了一个基于智能体和元胞自动机相结合的基本智能交通仿真模型。仿真结果表明,该方法既保持了元胞自动机的实现简单、效率高等基本特征和优点,又能反映交通系统中交通元素的自主特性和个体差异。  相似文献   

9.
实时可靠的交通流估计是城市交通管理与控制的基础.宏观的MCTM模型不 能获取引道路段的微观信息,微观的Paramics 仿真则需路网OD的准确估计, 为避开单一 模型使用的缺陷,本文提出建立宏微观耦合模型.在模型估计的单位间隔内,先利用 MCTM估计基本元胞有效密度和引道元胞初步密度,并在接口处计算仿真发车数量;再 转用Paramics 进行引道微观仿真,利用仿真检测数据计算交叉口排队长度和引道元胞有 效密度,取代初步密度,作为下一个间隔计算的初始输入,实现交通流的在线估计.仿真中, 为符合转向需求实时变化特性,建立基于约束卡尔曼滤波的转向需求估计模型,实时更 新单位间隔的转向需求.实例分析结果表明,宏微观耦合模型满足城市道路交通流在线估 计要求.  相似文献   

10.
为分析高速公路交通流检测数据质量,本文构建平方流量误差界(Squared Flow Error Bound, SFEB)和扩展卡尔曼滤波(Extended Kalman Filter, EKF)的决策级融合模型SFEB-EKF,在检测器空间覆盖不足情况下,计算检测路段和无检测器路段的交通状态估计误差界限。与SFEB 算法相比,融合模型利用EKF交通状态估计模型估计全路段交通状态,基于得到的估计样本计算全路段交通状态估计误差下界。同时,采用最近邻法(Nearest Neighbor Method, NNM)计算全路段交通状态估计误差上界。应用开源高速公路数据集测试模型,结果表明,与需要输入真实样本的SFEB算法相比,融合模型SFEB-EKF在缺少真实样本情况下,能取得相似的结果且误差保持 在5%以内,不同检测器覆盖率实验下模型表现出良好的稳定性。本文模型通过给出无检测器路段交通状态估计界限,为高速公路交通检测器布设方案提供参考。  相似文献   

11.
有效的交通事件管理应基于精确的交通事件持续时间预测。交通事件持续时间包括4个部分:事件发现时间,事件响应时间,事件清除时间和交通恢复时间。提出了基于元胞传输模型的交通事件持续时间预测模型以及参数标定方法。实测数据和仿真数据对比结果表明,基于元胞传输模型的交通事件恢复时间预测方法具有较高的精度。  相似文献   

12.
面向混合交通环境下多车效率类和单车安全类场景测试需求,研究了基于混合交通场景要素解析的车路协同测试案例生成方法;为提高测试案例的多样性和覆盖度,分析了混合交通特征要素相互作用机理,构建了混合交通场景要素层次模型,提出了场景要素重要度的一致性描述指标,并在此基础上建立了测试案例复杂度模型;针对多车效率类场景仿真测试,提出了复杂度激励的组合测试案例生成方法,设计了场景要素强耦合组合策略;针对单车安全类场景仿真测试,提出了基于复杂度聚类的蒙特卡洛测试案例生成方法,设计了风险场景特征参数抽样机制;选取车路协同混合交通典型场景开展仿真试验,验证了提出的测试案例生成方法的有效性。研究结果表明,对于多车效率类混合交通高速公路匝道合流场景测试,提出的方法比传统成对测试方法的场景最大复杂度提高了11.93%,高复杂度场景占比提高了60.02%,测试案例覆盖度提高了12.08%;对于单车安全类车路协同换道预警场景测试,提出的方法比传统蒙特卡洛测试方法的危险场景数提高了195%,且其参数估计误差降低了5.95%,高风险场景数提高了119%,且其参数估计误差降低了4.78%。可见,提出的方法能够提高测试案例的...  相似文献   

13.
基于入口匝道汇入方式与基本图形态, 提出了一种调整型元胞传输模型; 增加了入口匝道状态变量以追踪入口匝道交通状态, 定义了新的入口匝道汇入规则; 将双通行能力基本图引入到调整型元胞传输模型中, 以适应不同交通状态下通行能力的变化; 将单纯形法与遗传算法相结合, 提出了混合多目标参数优化方法; 建立了3个仿真场景, 评价调整型元胞传输模型与混合多目标参数优化方法的效果。仿真结果表明: 在预测入口匝道上游主线拥堵发生与结束时间方面, 与经典元胞传输模型相比, 调整型元胞传输模型将时间预测准确性分别提升了22.3、10.8 min; 在模拟入口匝道汇入段主线拥堵传播与消散方面, 调整型元胞传输模型模拟结果更加符合实际的传播与消散规律; 在模拟试验路段早发性失效交通特性方面, 调整型元胞传输模型对于拥堵前最大流量与拥堵后消散流量的拟合误差在4%以内, 小于经典元胞传输模型; 在模型仿真精度方面, 调整型元胞传输模型各项评价指标均优于经典元胞传输模型, 前者的仿真速度误差为10.42 km·h-1, 较后者降低了25.4%;与传统的遗传算法相比, 混合多目标参数优化方法的总计算次数更少, 参数标定过程总耗时缩短了29.3%。   相似文献   

14.
针对交通过饱和情况,利用网联车轨迹数据提供的车辆到达和停车位置等信息,提出一种基于交通冲击波的周期初始队列长度和最大排队长度的估计方法。基于网联车车辆轨迹确定车辆到达时刻、排队时刻、启动时刻及驶离时刻4个临界点的时空数据,并根据时空信息建立到达率估计模型,运用冲击波理论对每个周期初始队列长度及最大排队长度进行估计,应用微观交通仿真软件SUMO对模型进行仿真验证。实验结果表明:在网联车渗透率不低于20%的情况下,当v/c=1.0(v为实际交通流量,c为道路通行能力)时,初始队列长度MAE值小于6.5 m,MAPE值小于10%,最大排队长度的MAE值小于16.0 m,MAPE值小于11%,说明基于车辆轨迹的交叉口排队长度估计模型能够较为有效地估计过饱和交叉口的最大排队长度和初始队列长度。  相似文献   

15.
为了通过路段检测交通流量计算拥挤条件下多种交通模式需求,提出了一个随机用户平衡条件下的多模式路径流量估计模型,并给出了相应模型的增广拉格朗日乘子算法,算法将模型中的路段容量、观测路段流量平衡与估计需求的范围等约束条件转化为相应的惩罚函数项,并将原先的有约束优化流量估计模型转化为一个无约束优化模型,最后应用一个简单的投影迭代算法求解无约束优化模型.仿真结果表明:先验需求误差对模型的需求估计结果有重要影响,误差越小估计结果越准确,而先验需求误差对路段流量估计结果几乎没有影响,因此,模型和算法简单可用.  相似文献   

16.
为优化区域交通网络中各信号控制器的配时方案,利用递推最小二乘算法(RLS)和同时扰动随机近似(SPSA)算法,由检测器流量估计DynaCHINA动态网络交通仿真与分析系统的动态OD矩阵,输入并标定各路段的速度-密度模型参数和饱和流量,获得网络状态的准确估计,包括各路段的速度、密度、流量、队列长度等;在此基础上,利用SPSA算法优化各信号控制器配时参数,包括各信号控制器的周期、相位差和绿信比,使得网络中车辆的平均旅行延误、队列长度、或交叉口通过量等指标最优. 针对实际路网的测试表明,本文的参数标定方法可以获得准确的检测器流量估计,结果明显优于Ashok K的动态OD矩阵与检测器流量估计方法;与现有的基于Synchro信号配时优化软件获得的结果相比较,该方法可较大幅度缩短车辆在路网中的平均旅行延误,并可推广应用于更复杂的区域路网的信号控制参数优化等场合.  相似文献   

17.
大型活动中突发事件对交通流的时空影响   总被引:1,自引:0,他引:1  
为了研究大型活动消散过程中交通流分布状况,分析了大型活动中突发事件对交通流分布的时空影响特征,总结了突发事件下常用的交通管制和疏导措施,将静态多路径交通分配方法与元胞传输模型(CTM)相结合,设计出了适合突发事件下的准动态交通分配方法.对一个小规模路网进行仿真,计算了突发事件下各交叉口节点的拥堵时刻,研究了路网拥堵的形成及消散的时空变化规律,并对两组不同管控方案下交通流疏散效率进行了对比.对比结果表明:不同控制方案下的路网在仿真时段内平均车辆延误分别为197、232 S·pcu-1,由该指标可以判断方案一优于方案二,因此,基于CTM的准动态交通分配方法可定量评价突发事件下交通组织方案的效果.  相似文献   

18.
为方便交通部门能够更直接地掌握道路交通流状态,对交通流进行管理、调节和诱导,从而提高路网交通效率,本文主要围绕交通流状态统计、交通流状态仿真和不同交通状态的决策方案三个方面进行研究。研究基于物理公式和格林希尔治模型理论构建交通流流量与车辆平均速度的基础模型,根据不同道路的最大流量判断道路交通状态;利用matlab将道路简化为元胞自动机的运动过程进行分析;并根据交通流状态分析结果提出合理的决策方案。  相似文献   

19.
唐易  汤俊青  刘恒 《交通与运输》2021,34(z1):52-56,69
为了准确分析高速公路弯道路段对车辆行驶速度的影响,研究提出一种基于车辆GPS数据的车辆行驶速度变化特征分析方法.首先,汇聚夜间时段车辆在弯道路段的GPS数据,并对数据完成清洗预处理;其次,结合弯道路段的拓扑结构设计虚拟的检测断面,并将GPS数据聚合到检测断面,分析不同断面的车辆行驶速度变化特征;最后,将分析结果应用于微观交通仿真的参数标定中,验证该方案能够有效提升仿真模型的精度.研究结果已直接应用于深圳机荷高速公路改扩建工程微观交通仿真模型的参数标定,显著提高了仿真模型评估分析的可信度.  相似文献   

20.
针对城市快速路控制系统对实时道路交通状况不能及时、有效地响应问题,利用时变的交通状态估计与OD矩阵预测信息,基于智能交通控制及分层分布式思想,提出一个新颖的城市快速路匝道控制方法. 采用基于多项式趋势模型的滤波方法对路段总的交通需求进行估计与预测,提前确定道路将来排队长度的上界;对快速路网未来的交通状态进行预测,基于全局最优的思想,提前为路网中各个匝道建立协调约束,为匝道调节率的制定提供依据. 仿真结果表明,分层分布式的快速路控制系统通过协调各个匝道之间的利益,能够有效缓解高峰出行时的拥堵现象,对实现城市快速路网整体性能优化具有现实意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号