首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
基于自动驾驶车辆(AV)和常规人驾车辆(RV)混合行驶的情况,在全速度差(FVD)模型的基础上考虑了多前车和一辆后车的车头间距、速度、速度差、加速度差等因素,建立了适用于AV和RV 2种车辆的混行车辆跟驰模型;引入分子动力学理论定量化表达了周围车辆对主体车辆的影响程度;利用RV和AV混行场景跟车数据,以模型拟合精度最高为目标,对所有参数遍历寻优,进行标定;对比分析了混行车辆跟驰模型和FVD模型控制下交通流的稳定性,解析了车速对交通流稳定性的影响;设计了数值仿真试验,模拟了城市道路和高速公路2种常见场景,分析了混行车辆跟驰模型的拟合精度。研究结果表明:考虑周围多车信息有利于提高交通流的稳定性;车辆速度越低交通流稳定性越差;考虑多车信息的分子动力学混行车辆跟驰模型可以提前获得整个车队的运行趋势,更好地模拟AV的动力学特征;与FVD模型相比,在城市道路条件下混行车辆跟驰模型中的RV平均最大误差与平均误差分别减小了0.18 m·s-1和13.12%,拟合精度提高了4.47%;与PATH实验室的ACC模型相比,在高速公路条件下混行车辆跟驰模型中的AV平均最大误差和平均误差分别减小了7.78%和26.79%,拟合精度提高了1.21%。可见,该模型可用于混行环境下AV的跟驰控制与队列控制,以及AV和RV的跟驰仿真。   相似文献   

2.
为研究含智能网联汽车(Connected and Automated Vehicle, CAV)和人工驾驶汽车(Regular Vehicle, RV)混行交通流下CAV跟驰行为的控制问题,考虑前后多车的速度、车头间距、速度差、 加速差等参数,采用分子动力学定量表达不同周边车辆对主体车的影响,得到可用于描述CAV在 混行交通流中的跟驰过程。稳定性分析结果表明,与全速度差模型相比,本文提出的考虑前后多车信息的CAV跟驰模型有利于提高交通流的稳定性。数值仿真与模型验证结果表明,与PATH 实验室的CACC(Cooperative Adaptive Cruise Control)模型相比,本文建立的CAV跟驰模型平均速度最大误差减小了0.19 m∙s-1 ,平均误差减小26.79%,拟合精度提高了0.91%。同时,在CAV和 RV组成的混行交通流中,随着CAV比例的逐渐增加,车队的平均速度和交通流量逐渐增加。迟滞回环曲线表明,与全速度差(Full Velocity Difference, FVD)模型相比,本文提出的CAV模型控制下的交通流稳定性更强。该模型可用于同质流或CAV与人工驾驶车辆等混行环境下的CAV跟驰控制,在目前开展混行实车实验困难的情况下,为混行交通流场景下的车辆控制及交通设施规划设计提供理论依据和模型支持。  相似文献   

3.
为解决当前自动驾驶车辆跟驰智能性评价中存在的以主观评价为主、缺少微观驾驶行为数据支撑的问题,以高速公路自然驾驶数据为基础,从自动驾驶车辆与人工驾驶车辆驾驶行为一致性的角度出发,构建自动驾驶车辆跟驰智能性评价模型。首先,通过无人机视频拍摄和图像处理,获取了国内18个省份部分高速公路上的高精度车辆轨迹,利用K-means聚类方法提取了15 446组稳定跟驰数据。然后,采用描述性统计方法对速度、加速度、跟车间距及跟车时距等指标进行分析。通过Gamma分布拟合不同速度下的跟车间距,以不同速度下跟车间距众数为中心,将跟车间距按照样本量的70%、20%、10%划分为与人工驾驶车辆驾驶行为一致性较好、一般、较差等3种情况,以此为基础建立自动驾驶车辆跟驰智能性评价模型。最后,通过自动驾驶车辆跟驰试验,证明所建模型适用于自动驾驶车辆跟驰智能性评价,相比既有研究,该模型的特点是能基于全过程、微观跟驰行为数据对自动驾驶车辆做出综合的量化评价。这表明基于自然驾驶数据与驾驶行为一致性构建的模型能客观、量化评价自动驾驶车辆跟驰行为,可用于自动驾驶车辆跟驰行为研究与技术参数设计。  相似文献   

4.
为揭示降雨天气下人机混驾交通流跟驰规律,从分析降雨对行车的影响入手,引入路面附着系数、驾驶能见度等参数,改进Gipps安全距离和行车加速度限制,针对不同跟驰模式建立元胞自动机模型,探寻降雨强度、渗透率双重影响的人机混驾交通流跟驰特性。数值仿真结果表明:雨天渗透率与通行能力呈正相关,但当渗透率低于0.25时,智能网联车对混合交通流平均速度、临界密度及通行能力的影响有限;当降雨强度高于0.3 mm/min时,随雨强度增大会加剧智能网联车跟驰退化,显著降低混合交通流的自由速度、临界速度及通行能力;小雨情况下,约0.1的渗透率可弥补降雨造成的通行能力损失;在中雨至大雨的降雨强度区间内,降雨强度每增加0.1 mm/min,相应提高渗透率0.1,路段通行能力可恢复到与晴天纯人工驾驶交通流相当的水平。  相似文献   

5.
自动驾驶车辆可以通过数据驱动模型较好地学习人类驾驶员的跟驰行为,但单纯的学习并不能发挥自动驾驶车辆反应更敏捷的特性.文中利用NGSIM数据集开发一种基于零反应时间数据的跟驰行为学习模型.首先,基于人类驾驶行为数据建立反应时间预测的神经网络模型,预测每条人类跟驰轨迹数据每个时间步的反应时间,并在原轨迹中剪除反应时间内的数据,进而重构样本数据,获得近似于零反应时间、更符合自动驾驶车辆特性的样本集.在此基础上采用LSTM架构,建立基于新学习样本的跟驰行为模型(LSTM-0RT).仿真对比发现:LSTM-0RT跟驰模型比传统LSTM模型提前50 s收敛,且速度变化趋势与前车基本一致,充分体现反应速度快的特点;在混驶环境测试中,采用LSTM-0RT模型的自动驾驶车辆比例越大,跟驰车队的渐进稳定性越高,车流波动的影响范围越小;交通流特性分析显示LSTM-0RT模型在不同交通流密度下的适用性明显优于LSTM模型;车头时距指标测算也表明LSTM-0RT模型具有更高的跟驰安全性.  相似文献   

6.
分析了自动驾驶汽车自适应巡航控制(Adaptive Cruise Control,ACC)和协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型,从系统控制原理、车车通信技术与车间时距方面阐述了ACC与CACC车辆的异同点;将目前主流ACC/CACC车辆跟驰模型分为3类:基于智能驾驶的车辆跟驰模型、加州伯克利大学PATH实验室车辆跟驰模型与基于控制论的车辆跟驰模型,总结3类车辆跟驰模型的建模思路与主要优缺点;从道路通行能力、交通安全和交通流稳定性3方面,分析了ACC/CACC车辆对交通流特性的影响,及其研究现状与未来发展趋势。研究结果表明:不同的ACC/CACC车辆跟驰模型对通行能力的影响存在较大差别,ACC/CACC车辆有利于提升交通安全性,但由于缺乏统一的安全性评价指标,难以量化ACC/CACC车辆对交通安全性的影响程度;小规模实车试验验证了ACC车辆具有不稳定的交通流特性,否定了ACC车辆稳定性数值仿真结果,而数值仿真试验和小规模实车试验均表明CACC车辆可较好提升交通流稳定性,因此,完全依赖于计算机仿真试验无法获得令人信服的结论,实车试验是ACC/CACC研究的必要途径;为了完善ACC/CACC在交通领域的研究,应构建不同ACC/CACC车辆比例下的混合交通流基本图模型、智能网联环境下的ACC/CACC车辆跟驰模型建模方法与ACC/CACC混合交通流稳定性解析方法。  相似文献   

7.
车辆轨迹数据蕴含着丰富的时空交通信息,是交通状态估计的基础数据之一. 为解决现有数据采集环境难以获得全样本车辆轨迹的问题,面向智能网联环境,构建了混合交通流全样本车辆轨迹重构模型. 首先,分析了智能网联环境下混合交通流的车辆构成及其轨迹数据采集环境;然后,提出了基于智能驾驶员跟驰模型的车辆轨迹重构模型,实现了对插入轨迹数量、轨迹位置和速度等参数的估计;最后,设计仿真试验验证了模型在不同交通流密度和智能网联车(connected automated vehicle,CAV)渗透率条件下的适用性. 试验结果表明:CAV和网联人工驾驶车(connected vehicle,CV)的渗透率为8%和20%时,该车辆轨迹重构模型在不同交通流密度下均能重构84%以上的车辆轨迹;重构轨迹准确性随着CAV和CV渗透率的增加而提高;当交通密度为70辆/km,且CAV渗透率仅为4%的情况下,模型也能重构82%的车辆轨迹.   相似文献   

8.
基于智能网联车辆(Connected Autonomous Vehicle, CAV)跟驰特性,本文研究CAV跟驰模型.考虑多前车电子节气门角度反馈,构建CAV跟驰模型,并应用稳定性分析方法,推导所提模型稳定性判别条件.以考虑3辆前导车的CAV跟驰模型为例,设计数值仿真实验,分析不同CAV比例时混合交通流的安全性.模型稳定性分析表明:所提模型相比已有模型(CAV的T-FVD模型及常规车辆FVD模型)具备更优的稳定域,且考虑前车数量越多、多前车反馈权重系数越大,所提模型的稳定性越好;相同取值条件下,距离越远处的前车反馈权重系数对所提模型稳定性的影响越大.数值仿真表明,CAV有利于降低交通流的车辆尾部碰撞安全风险.  相似文献   

9.
《黑龙江交通科技》2016,(1):127-129
为了研究实时道路条件对车辆跟驰行为的影响,应用车辆动力学结合车载GPS和传感器数据实时估算路面与轮胎间的附着系数,并应用附着系数对智能驾驶模型的最小期望跟驰间距进行修正,建立考虑实时道路条件的跟驰模型。对模型的分析表明:考虑实时道路条件的跟驰模型在保证乘客舒适性的基础上能提高道路的服务水平。  相似文献   

10.
为了精确地模拟车辆跟驰过程,应用相关分析的方法建立一系列跟驰模型,用微积分的方法解析模型.通过变量筛选.明确了影响车辆跟驰的重要因素有速度差、间距和前车速度.通过对模型的解析.确定了模型参数的合理取值范围以确保模拟的稳定.建立的跟驰模型可以模拟不同车辆之间的跟驰行为.预测跟驰车辆的运动状态,用于智能车辆控制或者用于追尾预警.如果获得了更完备的实验数据,基于相关分析建立跟驰模型的方法可以更精确地考虑到车辆运动状况、动力性能、道路条件、驾驶特性等影响因素.  相似文献   

11.
为研究施工区网联车与普通车混行状态下的车流跟驰及换道行为,分析网联车的区域内通讯及更小安全车距等特性,改进普通车元胞自动机模型的减速规则和随机慢化规则,构建网联车跟驰模型。建立普通车和网联车在施工区不同区段的换道意向规则,基于车距采集和空位排序算法建立网联车在通讯区域的预期换道和施工区域的强制换道模型,结合普通车换道模型模拟施工区混行车辆的换道规则及车流分布规律。采用算例验证模型,运用MATLAB仿真,多次实验消除随机因素影响,结果验证了网联车对扩大通行能力,提高平均车速及降低走行时间的有效性;不同比例下的换道点分布显示,网联车比例越高,预期换道区的换道点越靠近强制换道区,且强制换道点越靠前;而普通车换道点分布受混行车流比例的影响较小。  相似文献   

12.
梳理了近70年关于跟驰模型的研究, 根据建模方法将其分为理论驱动与数据驱动2类模型, 并归纳了跟驰模型的研究热点; 从人类因素、基础设施、交通信息、异质交通流、新建模型理论5个方面对理论驱动类跟驰模型的研究进行了综述; 根据所用机器学习算法的不同, 从模糊逻辑、人工神经网络、实例学习、支持向量回归、深度学习5个方面对数据驱动类跟驰模型的研究进行了综述。分析结果表明: 理论驱动类跟驰模型以理论推演交通现象, 对影响因素的考量难以全面, 部分人类因素难以量化, 驾驶人决策制定过程的解释不够准确, 异质交通流的跟驰模型缺乏一般交通条件下有效性的理论基础和形式化证明; 数据驱动类跟驰模型以交通现象归纳交通规律, 由于数据的来源、评价指标及评价方法不同, 导致应用机器学习算法得到的模型无法系统比较; 数据驱动类模型侧重于从微观角度研究驾驶行为特性, 对复杂交通现象(如交通震荡、迟滞等)的解释性不强; 跟驰模型的研究应创新数据采集方法, 捕捉驾驶人的心理倾向、感知特性和认知能力, 并量化人类因素的影响和充分利用大数据; 数据驱动类跟驰模型应为无人驾驶技术发展提供技术支持; 在自动驾驶完全普及之前, 人工驾驶与自动驾驶混合场景下的驾驶人跟驰行为特性尚待深入研究。   相似文献   

13.
考虑道路几何设计参数转弯半径、超高、坡度对车辆跟驰行为的影响,对车辆跟驰智能驾驶员模型(IDM)进行了改进.结合二自由度车辆动力学模型,利用Matlab/Simulink建立改进后的跟驰模型并进行仿真.仿真分析发现:在具有转弯、超高和坡度的道路上,改进后的模型,其跟驰车辆车头时距增大,行驶速度减小,保证了车辆行驶的安全性;车辆横摆角速度和侧向速度随半径和超高的增加而减小,保证了汽车操纵稳定性.结果表明,改进后的模型能够更准确地描述道路几何设计对车辆跟驰行为的影响.  相似文献   

14.
基于支持向量机算法建立车辆跟驰模型,模拟单车道车辆跟驰行为——加速、减速、无动作;利用NGSIM数据对模型进行训练和测试,并与Gipps车辆跟驰模型的测试结果进行对比。结果表明:所建模型各项误差指标的精度均有较大提升,能够挖掘出影响跟驰行为的变量之间的潜在关系,弥补了传统车辆跟驰模型的不足。  相似文献   

15.
考虑网联自动驾驶车辆(Connected Autonomous Vehicle, CAV)应用先进的车联网与自动驾驶技术,可以采用智能交叉口的组织形式,大幅提升交叉口的通行效率,为降低CAV与人工驾驶车辆(Human-driven Vehicle, HV)混行条件下城市交通系统的整体出行成本,提出智能交叉口在城 市交通网络中的布局优化问题,建立数学优化模型并求解。首先,基于对两类车辆行驶特性的分析,建立混合用户均衡模型,描述CAV与HV的路径选择行为;其次,从交通规划者的角度,以系统最优为目标,整合混合用户均衡模型,建立面向新型混合交通流的智能交叉口网络布局优化模型,并利用改进的遗传算法求解;最后,选取Sioux-Falls交通网络作为案例分析,验证模型与算法的有效性,并研究CAV渗透率变化对优化结果的影响。研究表明,智能交叉口在城市路网中的合理规划极大地提高了新型混行场景下城市交通系统的出行效率,同时,大幅降低了由于网联自动 驾驶单方面技术优势带来的CAV与HV的出行效率差距,增进了出行公平性。  相似文献   

16.
车辆跟驰模型是被交通科学与交通工程领域广泛认可的微观交通流模型,是交通流理论 的基础。近年来,信息感知与获取、大数据、人工智能等技术快速发展,推动了数据驱动跟驰模型 的快速发展。数据驱动跟驰模型,是以真实的车辆行驶数据为基础,利用数据科学与机器学习等 理论和方法,通过样本数据的训练、学习、迭代、进化,挖掘车辆跟驰行为的内在规律。本文系统 回顾了数据驱动跟驰模型在过去20余年的发展历程以及由神经网络和深度学习带动的两次研究 热潮,归纳了基于传统机器学习理论的跟驰模型、基于深度学习的跟驰模型、模型与数据混合驱 动的跟驰模型3类数据驱动跟驰模型,并分别介绍了其中的典型代表。分析数据源发现,尽管各 种高精度轨迹数据不断涌现,目前研究仍多使用美国于2006年发布的Next Generation Simulation (NGSIM)高精度车辆轨迹数据,模型的可移植性和泛化能力值得思考与研究。提出关于模型输 入、输出的3个问题:如何考虑更多驾驶行为变量,是否有必要考虑更多行为变量,现有输入、输出 是否可替换。在模型测试与验证方面,发现并讨论了目前测试不充分、对比不完整、缺少统一测 试集与测试标准等问题。最后,探讨了数据驱动跟驰模型原创性与成功的关键因素等问题。期 望通过本文的梳理,帮助研究者更好地了解数据驱动跟驰模型的过去与现状,促进相关研究的快 速发展。  相似文献   

17.
为了更好地模拟城市信号交叉口集聚车辆的跟驰行为,进而应用于城市信号交叉口信号配时和交通流理论研究,采用一种基于视频的交通流数据采集方法来采集信号交叉口的微观交通行为数据.运用灰色关联分析方法对采集到的微观交通数据进行分析,挖掘出其中的有用信息,从而寻求能够最大程度反映信号交叉口集聚车辆跟驰行为的影响变量.构建城市信号交叉口车辆集聚过程中的跟驰模型并进行参数标定、效果验证和比较分析.研究表明,新提出的跟驰模型能够很好地拟合信号交叉口集聚车辆的跟驰行为实测数据,其拟合性和稳定性优于重新标定后的扩展GM模型.  相似文献   

18.
为克服传统车辆跟驰模型不易获得驾驶员在决策过程中潜在的决策模式和各影响因素间的潜在关系的不足,采用随机森林(random forest,RF)算法建立车辆跟驰模型。模拟单车道车辆跟驰行为,利用NGSIM(next generation simulation)车辆轨迹实测数据对所建模型进行训练和测试,并与Gipps跟驰模型的测试结果进行对比。结果表明:与Gipps模型相比,RF模型的各项误差指标的精度均得到较大提升。  相似文献   

19.
分析驾驶员在冰雪条件下的驾驶行为特性,建立考虑驾驶员行为特性的跟驰模型,有助于丰富现有交通流理论.通过招募驾驶员开展实车跟驰试验,对比分析正常条件与冰雪条件下的驾驶行为差异.进而基于任务难度均衡理论构建包含人类因素参数的任务难度模块,引入改进后的智能驾驶员模型,并采用车辆轨迹数据对模型进行标定和有效性验证.研究表明:驾驶员在跟驰行驶过程中受外界刺激及自身驾驶能力影响时会对车辆行驶状态进行动态调整,试图保持期望间距,且速度与前车一致的状态;冰雪条件下驾驶员采取风险补偿行为,其车头时距波动幅度较正常条件收窄,模型引入人类因素参数可以较好地描述其差异性. 模型有效性验证表明,新模型在6个仿真场景中的表现都优于传统智能驾驶员模型,且表现出更好的鲁棒性.研究结果可为冰雪条件下的交通管理措施制定提供理论支持.  相似文献   

20.
为探究智能网联自动驾驶车辆(Connected and Autonomous Vehicle, CAV)与人工驾驶车辆 (Human Driving Vehicle, HDV)混合行驶的多车道异质交通流运行特征,本文剖析了异质交通流中不同类型车辆的跟驰模式,提出不同类型车辆双车道及多车道换道模型,进而构建了多车道异质交通流仿真模型,并分析了不同CAV混入率下的道路通行能力及换道行为特征。研究结果表明,随着CAV渗透率的提高,单车道通行能力由1678 pcu·h-1提升至4200 pcu·h-1,交通流临界密 度由25 pcu·km-1增长至35 pcu·km-1 ,同一渗透率下不同车道数的道路通行能力及临界密度值呈现显著差异性。异质交通流换道行为呈现三阶段特征:在低密度下,不同类型车辆均可自由行驶及换道;密度在20~100 pcu·km-1 时,车辆换道频率呈“上凸”状,CAV渗透率越高,HDV凸形峰值越大,而CAV峰值较低;在高密度下,受可换道空间的约束,不同类型车辆均无法完成换道。此外,进一步讨论了不同CAV渗透率及密度条件下的异质交通流仿真效益,包括交通量提升及秩序改善特征等。研究成果有助于理解智能网联环境下多车道异质交通流运行状况,为未来异质交通流管理提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号