首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
表面噪声矢量场空间相关特性射线声学建模(英文)   总被引:1,自引:0,他引:1  
Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated,with directional noise sources uniformly distributed on the ocean surface.In the evaluation of particle velocity,plane wave approximation was applied to each incident ray.Due to the equivalence of the sound source correlation property and its directivity,solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source.As a typical horizontally stratified media,surface noise in a perfect waveguide was investigated.Correlation coefficients given by normal mode and geometric models show satisfactory agreement.Also,the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient,while that of the surface noise in semi-infinitely homogeneous space is zero.  相似文献   

2.
Compared to a scalar pressure sensor, a vector sensor can provide a higher signal-to-noise ratio (SNR) signal and more detailed information on the sound field. Study on vector sensors and their applications have become a hot topic. Research on the representation of a vector field is highly relevant for extending the scope of vector sensor technology. This paper discusses the range-frequency distribution of the vector field due to a broadband acoustic source moving in a shallow-water waveguide as the self noise of a surface ship, and the vector extension of the waveguide impulse response measured over a limited frequency range using an active source of known waveform. From theory analysis and numerical simulation, the range-frequency representation of a vector field exhibits an interference structure qualitatively similar to that of the corresponding pressure field but, being quantitatively different, provides additional information on the waveguide, especially through the vertical component. For the range-frequency representation, physical quantities that can better exhibit the interference characteristics of the waveguide are the products of pressure and particle velocity and of the pressure and pressure gradient. An image processing method to effectively detect and isolate the individual striations from an interference structure was reviewed briefly. The representation of the vector impulse response was discussed according to two different measurement systems, also known as particle velocity and pressure gradient. The vector impulse response representation can not only provide additional information from pressure only but even more than that of the range-frequency representation.  相似文献   

3.
The existence of a multi-path channel under the water greatly decreases the accuracy of the short baseline positioning system.In this paper,the application of a time reversal mirror to the short baseline positioning system was investigated.The time reversal mirror technique allowed the acoustic signal to better focus in an unknown environment,which effectively reduced the expansion of multi-path acoustic signals as well as improved the signal focusing.The signal-to-noise ratio(SNR) of the time reversal operator greatly increased and could be obtained by ensonifying the water.The technique was less affected by the environment and therefore more applicable to a complex shallow water environment.Numerical simulations and pool experiments were used to demonstrate the efficiency of this technique.  相似文献   

4.
Because of its light weight,broadband,and adaptable properties,smart material has been widely applied in the active vibration control(AVC) of flexible structures.Based on a first-order shear deformation theory,by coupling the electrical and mechanical operation,a 4-node quadrilateral piezoelectric composite element with 24 degrees of freedom for generalized displacements and one electrical potential degree of freedom per piezoelectric layer was derived.Dynamic characteristics of a beam with discontinuously distributed piezoelectric sensors and actuators were presented.A linear quadratic regulator(LQR) feedback controller was designed to suppress the vibration of the beam in the state space using the high precise direct(HPD) integration method.  相似文献   

5.
At present,equivalent water depth truncated mooring system optimization design is regarded as the priority of hybrid model testing for deep sea platforms,and will replace the full depth system test in the future.Compared with the full depth system,the working depth and span are smaller in the truncated one,and the other characteristics maintain more consistency as well.In this paper,an inner turret moored floating production storage & offloading system(FPSO) which works at a water depth of 320m,was selected to be a research example while the truncated water depth was 80m.Furthermore,an improved non-dominated sorting genetic algorithm(INSGA-II) was selected to optimally calculate the equivalent water depth truncated system,considering the stress condition of the total mooring system in both the horizontal and vertical directions,as well as the static characteristic similarity of the representative single mooring line.The results of numerical calculations indicate that the mathematical model is feasible,and the optimization method is fast and effective.  相似文献   

6.
Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics. Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured, and the effects of different wedge laid areas on platform acoustic characteristic were tested. Vibration acceleration and self-noise caused by model vibration were measured in four conditions: 0%, 36%, 60%, and 100% of wedge laid area when the sonar platform was under a single frequency excitation force. An experiment was performed to validate a corresponding numerical calculation. The numerical vibration characteristics of platform area were calculated by the finite element method, and self-noise caused by the vibration in it was predicted by an experiential formula. The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.  相似文献   

7.
8.
Underwater cylindrical shell structures have been found a wide of application in many engineering fields, such as the element of marine, oil platforms, etc. The coupled vibration analysis is a hot issue for these underwater structures. The vibration characteristics of underwater structures are influenced not only by hydrodynamic pressure but also by hydrostatic pressure corresponding to different water depths. In this study, an acoustic finite element method was used to evaluate the underwater structures. Taken the hydrostatic pressure into account in terms of initial stress stiffness, an acoustical fluid-structure coupled analysis of underwater cylindrical shells has been made to study the effect of hydrodynamic pressures on natural frequency and sound radiation. By comparing with the frequencies obtained by the acoustic finite element method and by the added mass method based on the Bessel function, the validity of present analysis was checked. Finally, test samples of the sound radiation of stiffened cylindrical shells were acquired by a harmonic acoustic analysis. The results showed that hydrostatic pressure plays an important role in determining a large submerged body motion, and the characteristics of sound radiation change with water depth. Furthermore, the analysis methods and the results are of significant reference value for studies of other complicated submarine structures.  相似文献   

9.
[Objective]This paper aims to establish a dynamic model of a floating raft vibration isolation system with a liquid tank in order to study the mass effect of the liquid medium, tank form, structural stiffness and loading rate on acoustic performance. [Methods]A floating raft system with a cuboidal or cylindrical liquid tank is taken as the research object, and a fluid-structure coupling finite element dynamic model is established. The dynamic force transmission rate and power flow are then used to evaluate the acoustic performance of the system. The influence of the mass effect of the liquid medium, tank form, structural stiffness and loading rate of tank volume on the acoustic performance of the floating raft system are analyzed.[Results]The results show similar laws obtained through the calculation and analysis of the floating raft system with two types of tanks. The structural stiffness of the tank affects the mass effect of the liquid medium in the tank to a certain extent. [Conclusions]If full advantage is to be taken of the liquid mass effect in the tank with a large loading rate to improve the acoustic performance of the floating raft system, the design of the liquid tank and raft structure must have sufficient stiffness. In addition, under the condition that the floating raft structure has sufficient stiffness, its acoustic performance will improve significantly as the tank loading rate increases in the relevant low frequency range. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

10.
In the present paper,the effect of a small bottom undulation of the sea bed in the form of periodic bed form on the surface waves generated due to a rolling oscillation of a vertical barrier either partially immersed or completely submerged in water of non uniform finite depth is investigated.A simplified perturbation technique involving a non dimensional parameter characterizing the smallness of the bottom deformation is applied to reduce the given boundary value problem to two independent boundary value problems upto first order.The first boundary value problem corresponds to the problem of water wave generation due to rolling oscillation of a vertical barrier either partially immersed or completely submerged in water of uniform finite depth.This is a well known problem whose solution is available in the literature.From the second boundary value problem,the first order correction to the wave amplitude at infinity is evaluated in terms of the shape function characterizing the bottom undulation,by employing Green’s integral theorem.For a patch of sinusoidal ripples at the sea bottom,the first order correction to the wave amplitude at infinity for both the configuration of the barrier is then evaluated numerically and illustrated graphically for various values of the wave number.It is observed that resonant interaction of the wave generated,with the sinusoidal bottom undulation occurs when the ratio of twice the wavelength of the sinusoidal ripple to the wave length of waves generated,approaches unity.Also it is found that the resonance increases as the length of the barrier increases.  相似文献   

11.
Structural cracks can change the frequency response function (FRF) of an offshore platform. Thus, FRF shifts can be used to detect cracks. When a crack at a specific location and magnitude occurs in an offshore structure, changes in the FRF can be measured. In this way, shifts in FRF can be used to detect cracks. An experimental model was constructed to verify the FRF method. The relationship between FRF and cracks was found to be non-linear. The effect of multiple cracks on FRF was analyzed, and the shift due to multiple cracks was found to be much more than the summation of FRF shifts due to each of the cracks. Then the effects of noise and changes in the mass of the jacket on FRF were evaluated. The results show that significant damage to a beam can be detected by dramatic changes in the FRF, even when 10% random noise exists. FRF can also be used to approximately locate the breakage, but it can neither be efficiently used to predict the location of breakage nor the existence of small hairline cracks. The FRF shift caused by a 7% mass change is much less than the FRF shift caused by the breakage of any beam, but is larger than that caused by any early cracks.  相似文献   

12.
Underwater acoustic scattering echoes have time–space structures and are aliasing in time and frequency domains. Different series of echoes properties are not identified when incident angle is unknown. This article investigates variations in target echoes of monostatic sonar to address this problem. The mother wavelet with similar structures has been proposed on the basis of preprocessing signal waveform using matched filter, and the theoretical expressions between delay factor and incident angle are derived in the wavelet domain. Analysis of simulation data and experimental results in free-field pool show that this method can effectively separate geometrical scattering components of target echoes. The time delay estimation obtained from geometrical echoes at a single angle is consistent with target geometrical features, which provides a basis for object recognition without angle information. The findings provide valuable insights for analyzing elastic scattering echoes in actual ocean environment.  相似文献   

13.
The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.  相似文献   

14.
Acoustic vector sensor consists of pressure and particle velocity sensors,which measure the three-dimensional acoustic particle velocity,as well as the pressure at one location at the same time.By preserving the amplitude and phase information of the pressure and particle velocity,they possess a number of advantages over traditional scalar sensors.Signal-to-noise ratio (SNR) gain (which is often called array gain) is one of such advantages and is always interested by all of us.But it is not unchangeable if the spatial correlation of the noise field varies.Much more important,it is difficult to be given if the noise becomes complex.In this paper,spatial correlation of the vector field of isotropic volume-noise and surface-generated noise has been introduced briefly.Based on the results,the combined SNR output of a vector linear array is investigated and the maximum gain is given in the specified noise.Computer simulation shows that the output of one array in the same noise is not the same in different gestures.And then we find the best gesture through SNR calculation and obtain the biggest gain,which has important meaning to guide how to deploy an array in practice.We also should use the array with respect to the characteristics of the real ambient noise,especially in anisotropic noise field.  相似文献   

15.
In marine engine exhaust silencing systems, the presence of exhaust gas flow influences the sound propagation inside the systems and the acoustic attenuation performance of silencers. In order to investigate the effects of three-dimensional gas flow and acoustic damping on the acoustic attenuation characteristics of marine engine exhaust silencers, a dual reciprocity boundary element method (DRBEM) was developed. The acoustic governing equation in three-dimensional potential flow was derived first, and then the DRBEM numerical procedure is given. Compared to the conventional boundary element method (CBEM), the DRBEM considers the second order terms of flow Mach number in the acoustic governing equation, so it is suitable for the cases with higher Mach number subsonic flow. For complex exhaust silencers, it is difficult to apply the single-domain boundary element method, so a substructure approach based on the dual reciprocity boundary element method is presented. The experiments for measuring transmission loss of silencers are conducted, and the experimental setup and measurements are explained. The transmission loss of a single expansion chamber silencer with extended inlet and outlet were predicted by DRBEM and compared with the measurements. The good agreements between predictions and measurements are observed, which demonstrated that the derived acoustic governing equation and the DRBEM numerical procedure in the present study are correct.  相似文献   

16.
In order to predict acoustic radiation from a structure in waveguide, a method based on wave superposition is proposed, in which the free-space Green's function is used to match the strength of equivalent sources. In addition, in order to neglect the effect of sound reflection from boundaries, necessary treatment is conducted, which makes the method more efficient. Moreover, this method is combined with the sound propagation algorithms to predict the sound radiated from a cylindrical shell in waveguide. Numerical simulations show the effect of how reflections can be neglected if the distance between the structure and the boundary exceeds the maximum linear dimension of the structure. It also shows that the reflection from the bottom of the waveguide can be approximated by plane wave conditionally. The proposed method is more robust and efficient in computation, which can be used to predict the acoustic radiation in waveguide.  相似文献   

17.
In this study, we examine the hydrodynamic characteristics of three rows of vertical slotted wall breakwaters in which the front and middle walls are permeable and partially immersed in a water channel of constant depth, whereas the third wall is impermeable. The wave–structure interaction and flow behavior of this type of breakwater arrangement are complicated and must be analyzed before breakwaters can be appropriately designed. To study the hydrodynamic breakwater performance, we developed a mathematical model based on the eigenfunction expansion method and a least squares technique for predicting wave interaction with three rows of vertical slotted wall breakwaters. We theoretically examined the wave transmission, reflection, energy loss, wave runup, and wave force under normal regular waves. Comparisons with experimental measurements show that the mathematical model results adequately reproduce most of the important features. The results of this investigation provide a better understanding of the hydrodynamic performance of triple-row vertical slotted wall breakwaters.  相似文献   

18.
Mooring systems play an important role for semi-submersible rigs that drill in deepwater.A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009.The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m.Following the mooring analysis,a mooring design was given that requires upgrading of the rig’s original mooring system.The upgrade included several innovations,such as installing eight larger anchors,i.e.replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains.All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m.The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea.This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.  相似文献   

19.
A new generation conical spray system for conventional diesel engines or premixed combustion diesel engines is introduced. By means of oriented impingement method, flexible spray penetration in design is realized. High-speed photograph was used to investigate the spatial distribution characteristics of the new spray for cases of different impingement angles and needle valve opening pressures. The results show that, by applying spray impingement orientation, fuel jets spread along the cone surface as shape of sectors, so the dispersion of jets is increased obviously. Changing on impingement angle leads to variation of penetration, which is critical in homogeneous mixture preparation. Due to the flexibility of spray penetration in design, the spray impingement on liner is avoided in a great extent. The results also indicate that higher needle valve opening pressure results in longer penetration and larger spray angle after impingement. Combustion characteristics of the impinged conical spray were studied in the 1135 type diesel engine. The new impinged conical spray system work smoothly in full load range with better fuel economy and lower emissions of NOx and soot than the original test engine.  相似文献   

20.
An experimental program was undertaken to test the feasibility to detect the occurrence of structural damage using a modified mode shape difference technique. The vibration response of a steel beam fixed at one end and hinged at the other was obtained for the intact and damage conditions. Modal analysis was performed to extract the frequencies and mode shapes. The method shows a good potential in detection of occurrence and location of damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号