首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The benefit of using a PHEV comes from its ability to substitute gasoline with electricity in operation. Defined as the proportion of distance traveled in the electric mode, the utility factor (UF) depends mostly on the battery capacity, but also on many other factors, such as travel pattern and recharging pattern. Conventionally, the UFs are calculated based on the daily vehicle miles traveled (DVMT) by assuming motorists leave home in the morning with a full battery, and no charge occurs before returning home in the evening. Such an assumption, however, ignores the impact of the heterogeneity in both travel and charging behavior, such as going back home more than once in a day, the impact of available charging time, and the price of gasoline and electricity. Moreover, the conventional UFs are based on the National Household Travel Survey (NHTS) data, which are one-day travel data of each sample vehicle. A motorist’s daily travel distance variation is ignored. This paper employs the GPS-based longitudinal travel data (covering 3–18 months) collected from 403 vehicles in the Seattle metropolitan area to investigate how such travel and charging behavior affects UFs. To do this, for each vehicle, we organized trips to a series of home and work related tours. The UFs based on the DVMT are found close to those based on home-to-home tours. On the other hand, it is seen that the workplace charge opportunities significantly increase UFs if the CD range is no more than 40 miles.  相似文献   

2.
Plug-in hybrid electric vehicles (PHEVs) can be powered by gasoline, grid electricity, or both. To explore potential PHEV energy impacts, a three-part survey instrument collected data from new vehicle buyers in California. We combine the available information to estimate the electricity and gasoline use under three recharging scenarios. Results suggest that the use of PHEV vehicles could halve gasoline use relative to conventional vehicles. Using three scenarios to represent plausible conditions on PHEV drivers’ recharge patterns (immediate and unconstrained, universal workplace access, and off-peak only), tradeoffs are described between the magnitude and timing of PHEV electricity use. PHEV electricity use could be increased through policies supporting non-home recharge opportunities, but this increase occurs during daytime hours and could contribute to peak electricity demand. Deferring all recharging to off-peak hours could eliminate all additions to daytime electricity demand from PHEVs, although less electricity is used and less gasoline displaced.  相似文献   

3.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

4.
The emergence of electric unmanned aerial vehicle (E-UAV) technologies, albeit somewhat futuristic, is anticipated to pose similar challenges to the system operation as those of electric vehicles (EVs). Notably, the charging of EVs en-route at charging stations has been recognized as a significant type of flexible load for power systems, which often imposes non-negligible impacts on the power system operator’s decisions on electricity prices. Meanwhile, the charging cost based on charging time and price is part of the trip cost for the users, which can affect the spatio-temporal assignment of E-UAV traffic to charging stations. This paper aims at investigating joint operations of coupled power and electric aviation transportation systems that are associated with en-route charging of E-UAVs in a centrally controlled and yet dynamic setting, i.e., with time-varying travel demand and power system base load. Dynamic E-UAV charging assignment is used as a tool to smooth the power system load. A joint pricing scheme is proposed and a cost minimization problem is formulated to achieve system optimality for such coupled systems. Numerical experiments are performed to test the proposed pricing scheme and demonstrate the benefits of the framework for joint operations.  相似文献   

5.
The well-to-wheel emissions associated with plug-in electric vehicles (PEVs) depend on the source of electricity and the current non-vehicle demand on the grid, thus must be evaluated via an integrated systems approach. We present a network-based dispatch model for the California electricity grid consisting of interconnected sub-regions to evaluate the impact of growing PEV demand on the existing power grid infrastructure system and energy resources. This model, built on a linear optimization framework, simultaneously considers spatiality and temporal dynamics of energy demand and supply. It was successfully benchmarked against historical data, and used to determine the regional impacts of several PEV charging profiles on the current electricity network. Average electricity carbon intensities for PEV charging range from 244 to 391 gCO2e/kW h and marginal values range from 418 to 499 gCO2e/kW h.  相似文献   

6.
This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers’ within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.  相似文献   

7.
This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of $3.19 per day when exclusively charging at home, compared to $3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.  相似文献   

8.
Charging infrastructure is critical to the development of electric vehicle (EV) system. While many countries have implemented great policy efforts to promote EVs, how to build charging infrastructure to maximize overall travel electrification given how people travel has not been well studied. Mismatch of demand and infrastructure can lead to under-utilized charging stations, wasting public resources. Estimating charging demand has been challenging due to lack of realistic vehicle travel data. Public charging is different from refueling from two aspects: required time and home-charging possibility. As a result, traditional approaches for refueling demand estimation (e.g. traffic flow and vehicle ownership density) do not necessarily represent public charging demand. This research uses large-scale trajectory data of 11,880 taxis in Beijing as a case study to evaluate how travel patterns mined from big-data can inform public charging infrastructure development. Although this study assumes charging stations to be dedicated to a fleet of PHEV taxis which may not fully represent the real-world situation, the methodological framework can be used to analyze private vehicle trajectory data as well to improve our understanding of charging demand for electrified private fleet. Our results show that (1) collective vehicle parking “hotspots” are good indicators for charging demand; (2) charging stations sited using travel patterns can improve electrification rate and reduce gasoline consumption; (3) with current grid mix, emissions of CO2, PM, SO2, and NOx will increase with taxi electrification; and (4) power demand for public taxi charging has peak load around noon, overlapping with Beijing’s summer peak power.  相似文献   

9.
Increasingly, experts are forecasting the future of transportation to be shared, autonomous and electric. As shared autonomous electric vehicle (SAEV) fleets roll out to the market, the electricity consumed by the fleet will have significant impacts on energy demand and, in turn, drive variation in energy cost and reliability, especially if the charging is unmanaged. This research proposes a smart charging (SC) framework to identify benefits of active SAEV charging management that strategically shifts electricity demand away from high-priced peak hours or towards renewable generation periods. Time of use (TOU), real time pricing (RTP), and solar generation electricity scenarios are tested using an agent-based simulation to study (1) the impact of battery capacity and charging infrastructure type on SAEV fleet performance and operational costs under SC management; (2) the cost reduction potential of SC considering energy price fluctuation, uncertainty, and seasonal variation; (3) the charging infrastructure requirements; and (4) the system efficiency of powering SAEVs with solar generation. A case study from the Puget Sound region demonstrates the proposed SC algorithm using trip patterns from the regional travel demand model and local energy prices. Results suggest that in the absence of electricity price signals, SAEV charging demand is likely to peak the evening, when regional electricity use patterns already indicate high demand. Under SC management, EVs with larger battery sizes are more responsive to low-electricity cost charging opportunities, and have greater potential to reduce total energy related costs (electricity plus charging infrastructure) for a SAEV fleet, especially under RTP structure.  相似文献   

10.
Lack of charging infrastructure is an important barrier to the growth of the plug-in electric vehicle (PEV) market. Public charging infrastructure has tangible and intangible value, such as reducing range anxiety or building confidence in the future of the PEV market. Quantifying the value of public charging infrastructure can inform analysis of investment decisions and can help predict the impact of charging infrastructure on future PEV sales. Estimates of willingness to pay (WTP) based on stated preference surveys are limited by consumers’ lack of familiarity with PEVs. As an alternative, we focus on quantifying the tangible value of public PEV chargers in terms of their ability to displace gasoline use for PHEVs and to enable additional electric (e−) vehicle miles for BEVs, thereby mitigating the limitations of shorter range and longer recharging time. Simulation studies provide data that can be used to quantify e-miles enabled by public chargers and the value of additional e-miles can be inferred from econometric estimates of WTP for increased vehicle range. Functions are synthesized that estimate the WTP for public charging infrastructure by plug-in hybrid and battery electric vehicles, conditional on vehicle range, annual vehicle travel, pre-existing charging infrastructure, energy prices, vehicle efficiency, and household income. A case study based on California’s public charging network in 2017 indicates that, to the purchaser of a new BEV with a 100-mile range and home recharging, existing public fast chargers are worth about $1500 for intraregional travel, and fast chargers along intercity routes are valued at over $6500.  相似文献   

11.
This research evaluated the potential for wireless dynamic charging (charging while moving) to address range and recharge issues of modern electric vehicles by considering travel to regional destinations in California. A 200-mile electric vehicle with a real range of 160 miles plus 40 miles reserve was assumed to be used by consumers in concert with static and dynamic charging as a strict substitute for gasoline vehicle travel. Different combinations of wireless charging power (20–120 kW) and vehicle range (100–300 miles) were evaluated. One of the results highlighted in the research indicated that travel between popular destinations could be accomplished with a 200-mile EV and a 40 kW dynamic wireless charging system at a cost of about $2.5 billion. System cost for a 200-mile EV could be reduced to less than $1 billion if wireless vehicle charging power levels were increased to 100 kW or greater. For vehicles consuming 138 kWh of dynamic energy per year on a 40 kW dynamic system, the capital cost of $2.5 billion plus yearly energy costs could be recouped over a 20-year period at an average cost to each vehicle owner of $512 per year at a volume of 300,000 vehicles or $168 per year at a volume of 1,000,000 vehicles. Cost comparisons of dynamic charging, increased battery capacity, and gasoline refueling were presented. Dynamic charging, coupled with strategic wayside static charging, was shown to be more cost effective to the consumer over a 10-year period than gasoline refueling at $2.50 or $4.00 per gallon. Notably, even at very low battery prices of $100 per kWh, the research showed that dynamic charging can be a more cost effective approach to extending range than increasing battery capacity.  相似文献   

12.
Utility controlled-charging (UCC) of plug-in electric vehicles (PEVs) could potentially align vehicle charging with the availability of intermittent, renewable electricity sources. We investigated the case of a nightly charging program where the electric utility can control home PEV charging. To explore consumer acceptance of this form of UCC, we implemented a web-based survey of new vehicle buyers in Canada (n = 1470). The survey assessed interest in PEVs, explained UCC, and elicited openness to UCC through attitudinal questions and a stated choice experiment. We find potential for UCC support among one-half to two-thirds of respondents interested in purchasing a PEV, depending on the scenario. However, some respondents express concerns with privacy and loss of control. To quantify preferences for UCC, we estimated a latent class choice model where respondents chose between different PEV charging programs. The model identified four distinct respondent segments (or classes) that vary in their acceptance of UCC, as well as their valuation of renewable electricity, saving money on their electrical bill, and undergoing charging inconvenience. The overall sample was more sensitive to cost incentives than to renewable incentives, where cost-based UCC programs garnered 63–78% enrollment while renewable-based programs garnered only 49–59% enrollment. Overall, we observe the potential for widespread acceptance of UCC programs among Canadian PEV buyers, but program design and deployment will need to carefully acknowledge the various motivations and concerns of different vehicle buyer segments.  相似文献   

13.
This paper examines the charging behavior of 7,979 plug-in electric vehicle (PEV) owners in California. The study investigates where people charge be it at home, at work, or at public location, and the level of charging they use including level 1, level 2, or DC fast charging. While plug-in behavior can differ among PEV owners based on their travel patterns, preferences, and access to infrastructure studies often make generalizations about charging behavior. In this study, we explore differences in charging behavior among different types of PEV owners based on their use of charging locations and levels, we then identify factors associated with PEV owner’s choice of charging location and charging level. We identified socio-demographic (gender and age), vehicle characteristics, commute behavior, and workplace charging availability as significant factors related to the choice of charging location.  相似文献   

14.
Plug-in hybrid electric vehicles (PHEVs) can provide many of the benefits of battery electric vehicles (BEVs), such as reduced petroleum consumption and greenhouse gas emissions, without the “range anxiety” that can accompany driving a vehicle with limited range when there are few charging opportunities. However, evidence indicates that PHEVs are often plugged in more frequently than BEVs in practice. This is somewhat paradoxical: drivers for whom plugging in is optional tend to do so more frequently than those for whom it is necessary. This has led to the coining of a new term – “gas anxiety” – to describe the apparent desire of PHEV drivers to avoid using gasoline. In this paper, we analyze the variables influencing the charging choices of PHEV owners, testing whether drivers express preferences consistent with the concept of gas anxiety. We analyze data collected in a web-based stated preference survey using a latent class logit model. The results reveal two classes of decision-making patterns among the survey respondents: (1) those who weight the cost of gasoline and the cost of recharging approximately equally (the cost-minimizing class), and (2) those who weight the cost gasoline more heavily than the cost of recharging (the gas anxiety class). Respondents in the gas anxiety class expressed a willingness to recharge at a charging station even when doing so would cost approximately four times as much as the cost of the gasoline avoided. While the gas anxiety class represents the majority of our sample, more recent PHEV adopters are more likely to be in the cost-minimizing class. Looking forward, this suggests that public charging station operators may need to price charging competitively with gasoline on a per-mile basis to attract PHEV owners.  相似文献   

15.
The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low-carbon alternative to today’s gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition to conventional fuels was introduced into the MIT Emissions Prediction and Policy Analysis (EPPA) model as a perfect substitute for internal combustion engine (ICE-only) vehicles in two likely early-adopting markets, the United States and Japan. We investigate the effect of relative vehicle cost and all-electric range on the timing of PHEV market entry in the presence and absence of an advanced cellulosic biofuels technology and a strong (450 ppm) economy-wide carbon constraint. Vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals for reducing battery costs are met. If a low-cost PHEV is available we find that its adoption has the potential to reduce CO2 emissions, refined oil demand, and under a carbon policy the required CO2 price in both the United States and Japan. The emissions reduction potential of PHEV adoption depends on the carbon intensity of electric power generation. Thus, the technology is much more effective in reducing CO2 emissions if adoption occurs under an economy-wide cap and trade system that also encourages low-carbon electricity generation.  相似文献   

16.
This paper studies the heterogeneous energy cost and charging demand impact of autonomous electric vehicle (EV) fleet under different ambient temperature. A data-driven method is introduced to formulate a two-dimensional grid stochastic energy consumption model for electric vehicles. The energy consumption model aids in analyzing EV energy cost and describing uncertainties under variable average vehicle trip speed and ambient temperature conditions. An integrated eco-routing and optimal charging decision making framework is designed to improve the capability of autonomous EV’s trip level energy management in a shared fleet. The decision making process helps to find minimum energy cost routes with consideration of charging strategies and travel time requirements. By taking advantage of derived models and technologies, comprehensive case studies are performed on a data-driven simulated transportation network in New York City. Detailed results show us the heterogeneous energy impact and charging demand under different ambient temperature. By giving the same travel demand and charging station information, under the low and high ambient temperature within each month, there exist more than 20% difference of overall energy cost and 60% difference of charging demand. All studies will help to construct sustainable infrastructure for autonomous EV fleet trip level energy management in real world applications.  相似文献   

17.
Proposed legislation in British Columbia would require 30 percent of new car sales to be zero-emission vehicles by 2030, and 100 percent by 2040. The growing amount of energy demand and usage data from smart meters or internet of things (IoT) devices enables new research areas. We reporton machine learning approaches to reevaluate the impacts of battery electric vehicles (BEV) on the built environment. We developed a daily power profile analysis based on unsupervised learning, to understand the underlying structure of building and BEV charging station demand data. In addition, we have implemented a load aggregation method based on the features revealed by a clustering process. This aggregation method simulates the electricity demand of an arbitrary number of charging stations, all of which are connected to the main feeder of a building. Several scenarios are simulated using charging stations and building demand data from the University of British Columbia campus in Vancouver. Results for 150 charging stations revealed that the feeder load could increase from a peak load scenario of 300 kW to more than 1000 kW during a high-consumption weekday.  相似文献   

18.
Congestion charging is being considered as a potential measure to address the issue of substantially increased traffic congestion and vehicle emissions in Beijing. This study assessed the impact of congestion charging on traffic and emissions in Beijing using macroscopic traffic simulation and vehicle emissions calculation. Multiple testing scenarios were developed with assumptions in different charging zone sizes, public transit service levels and charging methods. Our analysis results showed that congestion charging in Beijing may increase public transit use by approximately 13%, potentially reduce CO and HC emissions by 60–70%, and reduce NOx emissions by 35–45% within the charging zone. However, congestion charging may also result in increased travel activities and emissions outside of the charging zone and a slight increase in emissions for the entire urban area. The size of charging zone, charging method, and charging rate are key factors that directly influence the impact of congestion charging; improved public transit service needs to be considered as a complementary approach with congestion charging. This study is used by Beijing Transportation Environment and Energy Center (BTEC) as reference to support the development of Beijing’s congestion charging policy and regulation.  相似文献   

19.
This paper investigates the market potential and environmental benefits of replacing internal combustion engine (ICE) vehicles with battery electric vehicles (BEVs) in the taxi fleet in Nanjing, China. Vehicle trajectory data collected by onboard global positioning system (GPS) units are used to study the travel patterns of taxis. The impacts of charger power, charging infrastructure coverage, and taxi apps on the feasibility of electric taxis are quantified, considering taxi drivers’ recharging behavior and operating activities. It is found that (1) depending on the charger power and coverage, 19% (with AC Level 2 chargers and 20% charger network coverage) to 56% (with DC chargers and 100% charger network coverage) of the ICE vehicles can be replaced by electric taxis without driving pattern changes; (2) by using taxi apps to find nearby passengers and charging stations, drivers could utilize the empty cruising time to charge the battery, which may increase the acceptance of BEVs by up to 82.6% compared to the scenario without taxi apps; and (3) tailpipe emissions in urban areas could be significantly reduced with taxi electrification: a mixed taxi fleet with 46% compressed-natural-gas-powered (CNG) and 54% electricity-powered vehicles can reduce the tailpipe emissions by 48% in comparison with the fleet of 100% CNG taxis.  相似文献   

20.
In suburban areas, combining the use of electric vehicles (EV) and transit systems in an EV Park-Charge-Ride (PCR) approach can potentially help improve transit accessibility, facilitate EV charging and adoption, and reduce the need for long-distance driving and ensuing impacts. Despite the anticipated growth of EV adoption and charging demand, PCR programs are limited. With a focus on multi-modal trips, this study proposes a generic planning process that integrates EV infrastructure development with transit systems, develops a systematic assessment approach to fostering the PCR adoption, and illustrates a case implementation in Chicago. Specifically, this study develops a Suitability Index (SI) for EV charging locations at parking spots that are suitable for both EV charging and transit connections. SI can be customized for short-term and long-term planning scenarios. SI values are derived in Chicago as an example for (1) commuter rail stations (for work trips), and (2) shopping centers near transit stops as potential opportunities for additional weekday parking and EV charging (for multi-purpose trips/MPT). Furthermore, carbon emissions and vehicle miles travelled (VMT) across various travel modes and trip scenarios (i.e., work trips and MPT) are calculated. Compared to the baseline of driving a conventional vehicle, this study found that an EV PCR commuter can reduce up to 87% of personal VMT and 52% of carbon emissions. A more active role of the public sector in the PCR program development is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号