首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 9 毫秒
1.
2.
陈建毅 《交通科技》2010,(2):10-12,16
介绍了重庆朝天门长江大桥钢桁拱安装总体方案和扣锚系统的设计及实施步骤,阐述了利用扣锚技术控制悬臂施工状态下桁拱结构变形及杆件安装应力,实现跨中无应力状态合龙的施工技术。  相似文献   

3.
武汉天兴洲公铁两用长江大桥斜拉索安装技术   总被引:2,自引:1,他引:1  
武汉天兴洲公铁两用长江大桥主桥为斜拉桥,共有斜拉索192根.斜拉索采用PES7-241、PES7-253 、PES7-283、 PES7-337、 PES7-379、PES7-409、PES7-421、PES7-451等8种规格,最长索272.18 m,单根斜拉索最重41.1 t.斜拉索两端均采用冷铸锚锚具.斜拉索的安装施工包括:运输、上船、上桥、塔端挂设、展索、梁端软牵引、塔内张拉等工序.用5个月完成全部4 000余吨斜拉索的安装.介绍该桥斜拉索的安装施工方法和施工技术特点.  相似文献   

4.
黄冈公铁两用长江大桥主桥为双塔双索面钢桁梁斜拉桥,跨度布置为(81+243+567+243+81)m.每桥塔两侧各设置19对斜拉索,全桥共有斜拉索152根,对该桥斜拉索安装技术进行总结.采用全回转架梁吊机将整盘斜拉索吊至桥面;采用全回转架梁吊机配合桥面上固定式放索盘进行桥面展索;斜拉索总体挂设采用先塔后梁的方案,利用塔吊和塔顶吊架完成塔端挂设;采用卷扬机及滑车组进行斜拉索梁端牵引,牵引到位后进行锚固;梁端安装完成后,3~8号斜拉索直接进行塔内刚性牵引,9~19号斜拉索先进行塔内软牵引(最大软牵引力为1 200 kN)再进行刚性牵引;按设计要求对斜拉索进行分级同步对称张拉.该桥全部4 000余吨斜拉索的安装在7个月内全部完成.  相似文献   

5.
黄冈公铁两用长江大桥主桥为双塔双索面钢桁梁双层桥面斜拉桥,钢桁梁采用散拼法架设.桥塔至辅助墩之间的钢桁梁采用双悬臂法架设,发明了一种自平衡抗风装置用于增强钢桁梁在对称双悬臂架设过程中结构的安全性;采用架梁吊机直接架设桥塔区钢桁梁;采用专用的三维空间定位吊具吊装多角度空间倾斜腹杆;研制了整体可移动施工脚手平台来提高钢桁梁架设过程本质安全;通过敏感性分析研究了多种合龙调整措施,实现了钢桁梁中跨高精度快速合龙.实践表明,整个钢桁梁架设过程安全顺利,成桥线形流畅,各项指标完全满足设计要求.  相似文献   

6.
常泰长江大桥主航道桥为(142+490+1 176+490+142) m公铁两用双层桥面斜拉桥,下层桥面采用上游侧布置两线城际铁路、下游侧布置4车道一级公路的非对称布置,造成大桥横桥向恒载非对称。为研究该桥桥塔在横桥向非对称恒载下的横向偏位以及控制方法,采用MIDAS Civil软件建立主桥桁架有限元模型,分析了不对称恒载对桥塔的作用模式、桥塔横向偏位成因,研究增设体外预应力索和塔上锚点偏移2种桥塔横向偏位控制方案的可行性。结果表明:上塔柱可简化成悬臂梁受力模式,桥塔横向偏位主要受空间斜拉索的横桥向分力和竖向分力控制,横桥向分力起主要控制作用;增设体外预应力索可有效控制桥塔的横向偏位,可操作性强;通过偏移锚点能够改善桥塔的横向偏位情况,但需要综合考虑主梁和桥塔的线形和内力,且可移动的距离受限,综合考虑该桥最终采用设置体外预应力索方案。  相似文献   

7.
武汉天兴洲公铁两用长江大桥墩顶散拼节段钢梁与整节段钢梁拼接前,通过精密测量工地现场已散拼的4节间钢梁和在工厂制作完成的整节段钢梁各主桁之间相对结构尺寸、轴线关系,为主塔墩顶4节间与首架整节段钢梁顺利拼装提供精确的测量数据.  相似文献   

8.
新建京港高铁安九段鳊鱼洲长江大桥南汊航道桥采用主跨672 m的双塔双索面钢箱混合梁交叉索斜拉桥,主跨及北辅助跨钢梁采用悬臂拼装架设,南辅助跨钢梁采用顶推施工,锚跨预应力混凝土梁采用支架现浇。该桥采用“多工序同步作业”,即双悬臂阶段塔柱与钢梁悬臂架设同步,单悬臂阶段桥面附属结构与钢梁架设同步,成桥后铺砟施工与调索同步。为了确保成桥内力及线形满足设计要求,采用3D Bridge有限元软件建立大桥计算模型,基于无应力状态法开展施工控制。针对钢梁自重在恒载中占比小、初期道砟容重低等特点,结合施工关键工序研究,采取钢梁无应力匹配制造、现场无应力安装、边跨与主跨主动合龙、斜拉索塔端锚杯加长设计、单节段内2对索异步张拉、交叉索分步安装、成桥后分2次调索等关键控制技术,实现了大桥精准、快速合龙,确保了“多工序同步作业”下的结构受力安全和线形控制。施工控制结果表明:考虑温度修正后实测线形与设计线形吻合,索力偏差小于10%,满足设计要求,成桥状态良好。  相似文献   

9.
宁波市明州大桥主桥采用主跨450 m的中承式双肢钢箱拱结构,大桥拱肋及桥面系梁均采用全焊接钢结构,中跨拱肋的施工采用缆索吊以及斜拉扣索工艺.介绍了该桥在中跨拱肋拼装过程中的施工控制特点、方法及成果,并对施工过程进行了全过程的计算机仿真模拟控制分析,其施工控制方法和技术可供类似工程参考.  相似文献   

10.
铜陵公铁两用长江大桥主桥为630m五跨连续钢桁梁斜拉桥,采用三主桁三索面结构型式。3片主桁均由全焊桁片拼装而成。通过对备选方案的研究和比选,铜陵岸钢梁架设采用边跨全顶推法架设+中跨悬臂法架设方案,无为岸钢梁架设采用边跨部分拖拉法架设+中跨悬臂法架设方案,中跨合龙采用桁片整体合龙方案。在4号桥塔墩设置顶推平台和顶推装置,将铜陵岸边跨和次边跨钢梁分段安装、分次顶推至全部就位,然后将中跨钢梁悬臂架设至合龙口;在2号墩前方设置安装平台、1号墩墩顶布置拖拉装置,将无为岸边跨和部分次边跨钢梁分段安装、分次拖拉至全部就位,然后将3号墩前后两侧钢梁双悬臂架设至边跨合龙,再将剩余中跨钢梁单悬臂架设至跨中合龙口;最后吊装合龙段桁片进行中跨合龙。  相似文献   

11.
常泰长江大桥为主跨1176 m的双塔双索面公铁两用双层斜拉桥.为研究侧风作用下该桥的动力响应以及桥上高速列车的行车安全性,采用WT TBDAS V2.0软件建立风-车-线-桥耦合分析模型,分析不同风速及车速下单、双线CRH2列车通过桥梁时车辆和桥梁的动力响应.结果表明:桥梁主跨跨中横向位移和横、竖向加速度随风速增大而增...  相似文献   

12.
13.
2020年12月14日,安九铁路鳊鱼洲长江大桥北汊航道桥N17号桥塔上下游塔冠封顶,从塔梁同步施工转序进入牵索挂篮悬臂施工;12月30日,南汊航道桥5号墩桥塔也成功封顶,南岸进入钢箱梁单悬臂架设。鳊鱼洲长江大桥是安九铁路跨越长江的重要通道,设计速度达350 km/h,其控制工程北汊航道为一座单箱六室曲线预应力混凝土斜拉桥,南汊航道为一座主跨672 m的交叉索面混合梁斜拉桥。  相似文献   

14.
李冰 《桥梁建设》2021,51(4):119-126
连镇铁路五峰山长江大桥为主跨1092 m的公铁两用悬索桥,采用双主缆地锚式结构,其缆索系统由索鞍、主缆、索夹及吊索组成.该桥缆索系统施工过程较为复杂,为保证缆索系统施工满足验收标准的要求,对其主要参数敏感性进行分析,并开展施工精细化控制.结果 表明:索鞍位置、主缆弹性模量、温度、主缆不圆度等参数均会对缆索体系的施工精度...  相似文献   

15.
广州明珠湾大桥主桥为主跨436 m的三主桁钢桁拱桥,采用“斜拉扣挂、拱梁同步”方案施工。通过比较斜拉扣挂体系的不同扣塔塔高和扣锚索布置,确定采用扣塔塔高100 m、3层扣锚索的总体布置形式。对大桥施工阶段斜拉扣挂体系最不利工况进行整体仿真分析和局部结构精细化分析,确定扣锚索采用1 770 MPa、?7 mm的高强平行钢丝索;扣塔采用三肢结构,每肢由2个1 340 mm×1 100 mm王字形截面构件组成。通过风洞气弹试验验证了该体系设计的合理性。工程实践证明:采用斜拉扣挂体系施工,可较好地控制钢桁梁架设时的线形,平衡结构内力,保证结构安全,同时减少了水上交通疏解成本,施工效率明显提高。  相似文献   

16.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的双塔双索面箱桁组合梁斜拉桥,2号、3号桥塔分别布置21对、17对平行钢丝斜拉索,采用直径7mm、公称抗拉强度为2 000MPa的高强钢丝,斜拉索最长320.956m,最重达59.758t。该桥塔柱及上横梁施工期间,同步进行钢梁架设、斜拉索安装。斜拉索工厂制作后运输至现场,由塔吊或提升站提升至公路或铁路桥面后展索;展索后采用塔端挂索、梁端牵引的方式安装;分2组、斜对角对称的方式张拉斜拉索,并根据监控结果分阶段调整索力。在塔、梁、索同步施工期间,采取措施控制不平衡荷载引起的塔柱偏移,并采取了测量控制、增加主动临时横撑、上横梁受扭控制等措施,保证塔、梁线形及受力安全。  相似文献   

17.
沪苏通长江公铁大桥天生港专用航道桥为(140+336+140) m刚性梁柔性拱桥,主梁为三主桁双层板桁组合结构,采用“先梁后拱,主梁双悬臂拼装,拱肋竖向转体”方案进行施工。为确保成桥线形和内力满足设计要求,采用MIDAS Civil软件建立全桥有限元模型,进行施工全过程和成桥分析,基于无应力状态法开展施工控制。钢梁墩顶节间施工时,设置墩旁托架,利用浮吊拼装;对称悬拼期间,为保证纵向稳定性,采用水袋对边跨进行配重,利用扣塔分别张拉2对扣索以改善钢梁受力并调整钢梁线形;采用预降边支点、4号墩钢梁整体预偏,以及扣索索力调整等措施进行钢梁中跨合龙;拱肋竖转后,主要通过扣索完成拱肋合龙调位;拱肋合龙后,从中间向两边张拉吊杆。经实测,该桥钢梁合龙口相对高差在10 mm以内;拱肋合龙口轴向偏差最大2 mm,相对高差最大1 mm;吊杆索力与设计目标索力偏差均在5%内,满足施工控制要求。  相似文献   

18.
刘涛 《交通科技》2008,(1):19-21
在高速铁路设计中采用大跨度钢箱拱桥结构形式,由于自然环境与交通环境的特殊性,采用转体施工方法较为合适.转体施工主要步骤为转体体系的设计与设置,施加配重,安装扣索,在钢箱拱主拱与边拱自平衡条件下转体,待温度合适后,先合龙拱肋,再合龙梁段.然后完成体系转换.  相似文献   

19.
从深溪沟大桥施工环境出发,结合大渡河深溪沟大桥无支架缆索吊系统的设计与施工工艺,分析了深溪沟大桥无支架缆索吊系统的钢管拱肋安装施工方案的选择和总体布置设计,主索、工作索、扣索、浪风缆索、垫梁、地锚设计与优化,起重索、牵引索及动力系统设计与施工工艺及其关键技术.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号