首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By using a self-designed non-thermal plasma (NTP) injection system, an experimental study of the regeneration of DPF was conducted at different temperatures, where oxygen as the gas source. The results revealed that PM can be decomposed to generate CO and CO2 by these active substances O3, O which was generated through the discharge reaction of NTP reactor. With the increasing of test temperature, the mass of C1 (C in CO) shows a overall downward trend while the mass of C2 (C in CO2) and C12 (C1 and C2) increase firstly and then decrease. When the test temperature is 80°C, the backpressure of DPF decreases fastest and the regenerative effect is remarkable. DPF can be regenerated by NTP technology without any catalyst at a lower temperature. Compared with the traditional regeneration method, the NTP technology has its superiority.  相似文献   

2.
An experiment was conducted to characterize the effects of SOF on EGR cooler fouling. A removable singletube test rig combined with a soot generator was developed to represent an EGR cooler and diesel exhaust gas. The use of a soot generator, which controlled the size and concentration of soot particles, enabled independent variables to be completely controlled. Either n-dodecane or diesel lube oil as substitute SOFs were vaporized and injected into the test rig to evaluate their effects on the growth of PM deposits and the degradation performance of the EGR cooler. Coolant temperature, which seemed to be associated with SOF content, was chosen as an independent variable, and PM deposit mass per unit area and the effectiveness drop versus time increased as the coolant temperature decreased. The PM deposit mass per unit area and effectiveness drop had maximum values at a coolant temperature of 40°C for every n-dodecane injection rate. For substitute SOFs tested in this experiment, the deposit mass increased when either n-dodecane or diesel lube oil was injected, but the effect of lube oil was more significant. Diesel lube oil seemed to have a stronger effect on the reduction of thermal conductivity by filling pores in the deposits. When diesel lube oil was injected, the deposit mass per unit area increased 127% compared to dry soot without injection. The effectiveness drop after 10 hours increased only 12.5%.  相似文献   

3.
In fuel-cell-powered vehicles, the fuel-cell system requires a thermal-management subsystem to dissipate heat released during the reaction of hydrogen with oxygen. When the stack generates power at a high rate, a large amount of heat is also generated. If cooling by the radiator is insufficient, a supplementary stack-cooling system is needed to maintain a safe operating temperature. In this study, the performance of a CO2 air-conditioning unit for stack cooling was investigated under various conditions, and the relationship between cabin cooling and stack cooling was also studied. The coefficient of performance (COP) increased from 1.9 to 2.4, with an increase in cabin-air inlet flow rate from 0 to 8 m3/min. When the air-conditioning unit was turned off, the cooling capacity of the stack cooler was increased; correspondingly, as the cabin-cooling capacity was increased, that of the stack cooler decreased. With an increase in ambient-air inlet temperature from 38°C to 45°C, the COP decreased by 24%. Additionally, both the stack-cooling capacity and cabin-cooling capacity were decreased by about 12% and 16%, respectively, due to reduced heat transfer in the gas cooler as the ambient air inlet temperature was increased. It is expected that the experimental results can serve as a resource in designing a stack-cooling system using a CO2 air-conditioning unit to enhance stack power generation and efficiency.  相似文献   

4.
Urea-SCR systems have been widely used in diesel vehicles according to the strengthened NOx (Nitrogen Oxides) emission standard. The NOx removal efficiencies of the latest well optimized urea-SCR system are above 90 % at moderate exhaust gas temperature of 250 ~ 450 °C. However, a large amount of NOx is emitted from diesel vehicles at cold start or urban driving conditions, when the exhaust gas temperature is not high enough for SCR catalyst activation. Although many researchs have been stuied to improve NOx conversion efficiency at these low temperature conditions, it is still one of important technical issues. In this study, the effect of UWS injection at low exhaust gas temperature conditions is studied. This study uses a 3.4 L diesel engine equipped with a commertial urea SCR system. As a result, it is found that about 5 % of NOx removal efficiency is improved in the NRTC test when UWS injection starts at the SCR inlet temperature of 150 °C compared to 200 °C. It is also found that urea deposits can be formed on the wall of exhaust pipe, when the local wall temperature is lower than temperature of urea decomposition.  相似文献   

5.
An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOx). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since PM (Particulate Matter) fouling reduces the efficiency of an EGR cooler, a tradeoff exists between the amount of NOx and PM emissions, especially at high engine loads. In the present study, we performed engine dynamometer experiments and numerical analyses to investigate how the internal shape of an EGR cooler affects the heat exchanger efficiency. Heat exchanger efficiencies were examined for plain and spiral EGR coolers. The temperature and pressure distributions inside these EGR coolers were obtained in three dimensions using the numerical package program FLUENT.  相似文献   

6.
In order to investigate the influence of initial regeneration temperatures on diesel particulate filter (DPF) regeneration, an experimental study of DPF regeneration was implemented using a dielectric barrier discharge (DBD) reactor, aided by exhaust waste heat after engine flameout. DPF trapping characteristics and carbon deposit mass were discussed to facilitate further data analysis and calculation. DPF regeneration was then investigated by comparison analysis of deposit removal mass, backpressure drop, and internal temperature change. The results revealed that a large amount of particulate matter (PM) was deposited in DPF with a high filtration efficiency of about 90 %. The deposit removal rate and percentage drop of the backpressure both maximized at the initial temperature of 100 °C. During DPF regeneration, the sharp rise of internal temperature indicated vigorous PM incineration and high CO2 emission. The results successfully demonstrated DPF regeneration using non-thermal plasma injection during engine flameout, and prominent heat durability was achieved in this method.  相似文献   

7.
EGR冷却器积炭机理研究   总被引:2,自引:0,他引:2  
研究了影响EGR冷却器产生积炭的因素以及EGR冷却器的积炭会造成的不利影响,其目的在于为构建EGR冷却器试验台做理论准备。影响EGR冷却器产生积炭的因素可以作为试验台参数调整和整体控制的依据,而积炭所造成的不利影响可作为试验台测试参数选择的依据。试验结果证明,产生积炭一方面与发动机废气的成分有关,另一方面与EGR冷却器的本身的结构和冷却条件有关;积炭本身会降低冷却器冷却效率、增加压力损失,从而降低了EGR减少NOx排放的工作能力。  相似文献   

8.
A system has been researched over the past 3 years for reducing the exhaust pollutants from diesel engines for light commercial vehicles. The system researched achieves Euro 6 standards for reduction of polluting gases (CO, HC, PM, NO). It consists of 4 main sections: 1. A heater and heat exchanger (HE); 2. A CO/HC oxidising catalyst (D°C); 3. Pt catalyst on a diesel particulate filter (DPF); 4. A NO reducing reaction (SCR) within the DPF. The system operates as follows. The exhaust gas contains oxidising gases, namely both O2 and NO2. The levels of CO and HC are oxidised by O2 to CO2 for temperatures above 200°C. Carbon (PM) is oxidised to CO2 by NO2 but requires a temperature above 250°C. The operating exhaust temperature of 300°C is ideal for the removal of NO by using the Pt catalyst and the CO generated within the DPF. The heater is required to be able to raise the exhaust temperature at any time to 300°C in order to optimise the performance of the system, since diesel engine exhaust temperatures vary between 160°C (slow speeds) to 350°C (high speeds). Considerable heat is required (??3 kW) to maintain the exhaust gas for a 2l engine at 300°C for engine idle conditions. Therefore a heat exchanger is required to re-circulate the input heat and thereby reduce the maximum power consumption to a maximum of 500W over the engine full operating test cycle. This energy is supplied by the engine battery and alternator. Experimental results have been obtained for the exhaust from a Kubota diesel engine and the reductions in exhaust emissions of 83% (CO/ HC), 58% (NOx) and 99% (PM) were obtained. The PM was continuously cleaned so that there was no build up of back pressure.  相似文献   

9.
本文通过对发动机增压器匹配优化、EGR冷却器散热面积计算和ANSYS建模分析、带EGR的发动机稳态和瞬态标定技术研究等,验证了EGR结合POC和DOC可以使4.5L样机满足国TV排放法规。而EGR+DOC不能使样机满足国IV排放法规。  相似文献   

10.
Along with alumium, titanium and composite alloys, magnesium alloys have been given much attention by industry for applications such as lightweight automobiles and electronics because of their high strength, low specific density and good damping characteristics. In this paper, creep tests were done with magnesium alloys (Mg-3% Zn-1% Mn, Mg-1.2% Zn-1% Mn, and Mg-3% Zn-1% Mn-0.3% Ca) containing different amounts of Zn to investigate the effect of Zn and Ca on the deformation behavior and the rupture time for Mg alloy creep under elevated temperatures. The alloys were obtained as follows: (1) pure magnesium (9.7 kg) was melted at 720°C in an SF6 atmosphere; (2) the temperature was increased up to 800–820°C after adding 0.3 kg of pure Mn to make the Mg-1% Mn master alloy; (3) the minor element (Zn, Ca) was added to the master alloy; and (4) the magnesium alloy melts were cast into a metallic mold preheated to 150°C. The creep tests were executed under a constant load and temperature to measure the steady-state rate and rupture time of creep. Based on the experimental results, the creep behavior of the alloys seemed to be controlled by dislocation climb at around 0.5∼0.55Tm (Tm; melting temperature). In addition, the results showed that the addition of Ca was effective for increasing the creep resistance of a Mg alloy: the more Zn present in the alloy, the stronger the creep strength of the alloy.  相似文献   

11.
Understanding the mechanism of carbon oxidation is important for the successful modeling of diesel particulate filter regeneration. Characteristics of soot oxidation were investigated with carbon black (Printex-U). A flow reactor system that could simulate the condition of a diesel particulate filter and diesel exhaust gas was designed. Kinetic constants were derived and the reaction mechanisms were proposed using the experimental results and a simple reaction scheme, which approximated the overall oxidation process in TPO as well as CTO. From the experiments, the apparent activation energy for carbon oxidation with NO2-O2-H2O was determined to be 40±2 kJ/mol, with the first order of carbon in the range of 10∼90% oxidation and a temperature range of 250∼500°C. This value was exceedingly lower than the activation energy of NO2-O2 oxidation, which was 60±3 kJ/mol. When NO2 exists with O2 and H2O, the reaction rate increases in proportion to NO2. It increases nonlinearly with O2 or H2O concentration when the other two oxidants are fixed.  相似文献   

12.
This paper investigates the effects of Hydrotreated vegetable oil-diesel blend to combustion characteristics under various ambient oxygen concentrations and ambient pressure. Combustion characteristics were investigated using heat release rate analysis, two color method, soot concentration measurement and NOx concentration measurement. The experiments were carried out on a rapid compression expansion machine to simulate the ambient condition of a CI engine at TDC. Synthetic gas with oxygen concentrations of 21 %, 15 % and 10 % were used to simulate EGR conditions. A single hole injector was used with five different fuels: commercial diesel, HVO-commercial diesel blends and HVO. The results showed that increasing HVO blending percentages decreased ignition delay, flame temperature, soot concentration and NOx concentration. Heat release at oxygen concentration of 10 % dramatically dropped due to a shortened ignition delay, which resulted in less combustion. A decreased oxygen concentration from applied EGR conditions not only increased ignition delay, heat release, flame temperature and NOx concentration, but also increased soot concentration. A combination of EGR and supercharged conditions by increasing ambient pressure and decreasing oxygen concentrations resulted in increased heat release, decreased flame temperature, ignition delay and soot concentration, compared to EGR conditions.  相似文献   

13.
EGR对车用柴油机性能影响的试验研究   总被引:2,自引:0,他引:2  
结合某废气涡轮增压和高压共轨小型4缸柴油机国Ⅳ排放达标工作,进行了计算机在线实时控制EGR对柴油机性能影响的试验研究,通过试验分析了EGR对NOx、烟度、排气温度、燃油消耗率的影响规律,并对EGR率与喷油提前角的匹配作了进一步的研究。结果表明,为降低柴油机NOx排放,不同工况应采取不同的EGR率;烟度、排气温度、燃油消耗率均随着EGR率的增加而增大;EGR率和喷油提前角应实现良好的匹配,才能保证NOx排放和燃油消耗率都能达到要求,其中小EGR率匹配小喷油提前角,大EGR率匹配大喷油提前角。  相似文献   

14.
针对柴油机EGR氛围产生的颗粒,采用热重分析法,考察了各颗粒样品的氧化失重过程,分析了EGR率、EGR废气组分、EGR温度等EGR氛围参数对颗粒氧化特性的影响,研究了不同氧化氛围、升温速率等氧化氛围参数对颗粒氧化过程的影响。结果表明,随着EGR率的升高,颗粒中SOF组分含量增加,炭烟组分含量减少,失重率峰值在低温失重区升高,在高温失重区降低,且对应的峰值温度均增加。相同EGR率时,随着EGR废气温度的升高,颗粒的氧化性能随着反应温度的提高而降低。EGR组分不同时,与废气、N2循环相比,在CO2循环下生成的颗粒失重速率更快,反应温度降低,颗粒更易氧化。随着升温速率的提高,颗粒的失重率峰值变化不大,颗粒的氧化反应出现滞后现象,特征点温度升高,颗粒的氧化性能随着升温速率的提高而降低。  相似文献   

15.
An electric water pump for engine cooling system has an advantage which particularly in the cold start, the use of the electric water pump saves fuel and leads to a corresponding reduction in emissions. However, the electric water pump for internal combustion engine generates much more heat loss than that for hybrid electric vehicle or electric vehicle since it is operated by electric power of high current and low voltage. In this study, the fluid flow and thermal characteristics of the canned type electric water pump with an inverter integrated has been investigated under the effects of heat generation. The analysis conditions such as outdoor air temperature of 125°C, water pump speed of 6000 rpm, coolant temperature of 106°C and coolant flow rate of 120 L/min were used as a standard condition. Therefore, the thermal performance of the canned type electric water pump’s motor and inverter was evaluated by comparison with that of mechanical seal type. In the motor, the temperature reduced by over 10°C, and in the inverter, the amount of temperature decrease equaled to the maximum temperature difference, about 18.7°C. Also, canned type electric water pumps of variable materials were compared for the evaluation of thermal transfer performance for variable thermal conductivity of a can. The motor and inverter were cooled lower to 42°C at motor and about 40°C at inverter for reasonable selection of can’s thermal conductivity.  相似文献   

16.
EGR系统是治理内燃机排放污染物Nq的有效方法之一,在PTO台架上对SNH4102型柴油机EGR系统进行标定试验,采用真空度控制EGR阀开度,实现EGR系统的调节。在柴油机额定转速下,将测功器开至100%,75%,50%,10%;在最大扭矩下,将测功器开至100%,75%,50%;及怠速工况下,找到EGR阀最佳开度,完成EGR系统的标定;并通过NHA-501型废气分析仪和FLB-100不透光式烟度计等测量排放物的含量。结果表明:在SNH4102型柴油机台架试验中,EGR系统对于NOx的控制有明显的效果,对CO和HC等排放物的抑制作用不明显。  相似文献   

17.
在EQ6100型汽油机上获取最佳EGR率的试验研究   总被引:1,自引:0,他引:1  
试验结果表明,在各种负荷工况下,EQ6100型汽油机采用EGR后其NOx排放都显下降,但HC、CO排放及燃油消耗率随EGR率的变化则较为复杂,而因各工况下均存在一个最佳EGR率。通过试验,给出了EQ6100型汽油机2000r/min下最佳EGR率随负荷变化的曲线,为其排气背压控制EGR系统的设计提供了依据。  相似文献   

18.
低温等离子体喷射系统降低排放及再生DPF的试验研究   总被引:2,自引:0,他引:2  
通过建立低温等离子体(NTP)喷射系统试验台架,研究了NTP反应器产生的活性物质对柴油机HC,NOx,PM排放的转化效果,并研究了对DPF的再生效果。研究结果表明:当柴油机在低速小负荷工况运行时,排气温度较低,NTP反应器产生的O3,O等活性物质主要将柴油机NOx排放物中的NO部分氧化为NO2;当柴油机高速大负荷工况运行时,活性物质对排气中HC,PM的氧化作用加强,将额外生成CO,同时实现对DPF的连续再生。  相似文献   

19.
在1台增压中冷柴油机上,采用从涡轮前取气回流到压气机后的高压EGR系统,研究了恒定转速不同负荷下发动机的燃烧和排放特性。在同一工况下,随着EGR率增加,压缩终了混合气温度升高,着火延迟期缩短,燃气压力和温度下降,燃烧持续期延长。分析了柴油机燃烧过程及排放污染物的形成机理。研究发现,当发动机负荷由大变小时,随着EGR率增加,CO的形成因受温度控制增幅越来越大,HC受着火延迟期和供氧的影响增幅越来越小,NO_x的降幅几乎随EGR率呈线性变化,而排气烟度则呈二阶多项式趋势的恶化。  相似文献   

20.
In this study, the effect of hydrothermal aging over a commercial diesel oxidation catalyst (DOC) on deterioration in nitrogen dioxide (NO2) production activity has been experimentally investigated based on a micro-reactor DOC experiment. Through this experimental result, the NO2 to nitrogen oxides (NOx) ratio at DOC outlet has been mathematically expressed as a function of DOC temperature according to various aging conditions. The current study reveals that the catalyst aging temperature is a more dominant factor than the aging duration in terms of the decrease in NO2 production performance through DOC. The DOC sample hydrothermally aged for 25 h at 750 °C has displayed the lowest NO2 to NOx ratio compared to the samples aged for 25 ~ 100 h at 650 °C. Also, in this study, the impact of hydrothermal aging of a DOC on the selective catalytic reduction (SCR) efficiency in a ‘DOC + SCR’ aftertreatment system was predicted by using transient SCR simulations. To validate the SCR simulation, this study has conducted a dynamometer test of a non-road heavy-duty diesel engine with employing a commercial ‘DOC + SCR’ system on the exhaust line. The current study has quantitatively estimated the effect of the variation in NO2 to NOx ratio due to the hydrothermal aging of DOC on the NOx removal efficiency of SCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号