首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 627 毫秒
1.
This paper presents a new active steering control system based on driving phase diagram (β fr ?δ f diagram). In order to make state variables to follow those of nominal vehicle model that was developed under no consideration of disturbance, Quadratic Programming Problem (QPP) is formulated, where time varying objective function minimizes the differences between nominal and actual parameters. The steering characteristic in active steering control system changes when the vehicle faces disturbance such as crosswind and flat tire, and driver tries to counteract it after recognizing the change. The proposed method defines a stability region on β fr ?δ f diagram. In order to make β fr and δ f remain in the stability region, a new model predictive controller is proposed. While conventional controllers are restrictive to satisfy the β fr ?δ f diagram based stability condition, the proposed controller ensures solution space and also plays a direct role to minimize the evaluation function in the constrained optimal control problem.  相似文献   

2.
In this paper, a gain scheduled linear quadratic tracking system (LQTS) tuned optimally by an evolutionary strategy (ES) is devised to reduce the total tailpipe hydrocarbon (HC) emissions of an automotive engine over the coldstart period. As the engine’s behavior during coldstart operations is nonlinear, the system dynamics is clearly analyzed and represented by a number of separate linear models generated based on a coldstart model verified by experimental data. An independent LQTS is then implemented for each of these linear models. In this way, several control laws are created, and the corresponding gains are calculated for each of the independent control laws. ES is then used to tune the adjustable parameters of LQTSs to calculate the control inputs, namely air/fuel ratio (AFR) and spark timing (Δ), such that the resulting exhaust gas temperature (T exh) and engine-out HC emissions (HC raw) be close to a set of optimum profiles. This enables the controller reduce the cumulative tailpipe hydrocarbon emissions (HC cum) to the highest possible extent. To demonstrate the acceptable performance of the proposed controller, an optimal controller derived from the Pontryagin’s minimum principle (PMP) is also taken into account. Based on the results of the conducted comparative study, it is shown that the proposed control technique has a very good performance, and also, can be easily used for real-time applications, as it consumes a remarkably trivial computational time for calculating the controlling commands.  相似文献   

3.
The use of automotive LPG characteristics which are easy to evaporate vaporization and carry. The paper presents a design of extended-range electric vehicle for wall-guided two stroke LPG engine with direct injection combustion system. Based on the modified vehicle LPG spray model, a database describing the characteristics of vehicle LPG fuel was built and imported into the CFD software. And the accuracy of the model is verified by the Schlieren experimental results. The concentration and velocity field of the mixture in the cylinder under different load conditions are numerically analyzed. The analyzed result indicated that the start injection time θ = 60°–70°CA BTDC under part load condition, the plug electrode near the gathering of a richer mixture is easy to be fired at spark ignition time, the obvious formation of mixture in cylinder is formed and the overall air-fuel ratio is above 40: 1. The start-transition working condition and large load conditions in the piston moves upward before closing the exhaust port to start injection LPG. The optimized LPG injection start time θ ensures that the fresh gas is locked in the cylinder when the exhaust port is closed (63°CA ABDC). In the ignition time of the spark plug, an ideal homogeneous mixture in the cylinder is realized.  相似文献   

4.
Power loss optimization aiming at the high-efficiency drive of front-and-rear-induction-motor-drive electric vehicle (FRIMDEV) as an effective way to improve energy efficiency and extend driving range is of high importance. Different from the traditional look-up table method of motor efficiency, power loss optimization of the dual- motor system based on the loss mechanism of induction motor (IM) is proposed. First of all, based on the power loss characteristic of FRIMDEV from battery to wheels, the torque distribution optimization model aiming at the minimum system power loss is put forward. Secondly, referring to d-q axis equivalent model of IM, the power loss functions of the dual-IM system are modeled. Then, the optimal torque distribution coefficient (β o) between the two IMs is derived, and the theoretical switching condition (T sw) between the single- and dual-motor-drive mode (SMDM and DMDM) is confirmed. Finally, a dual-motor test platform is developed. The derived torque distribution strategy is verified. The influence of motor temperature on β o and T sw are tested, and the correction models based on temperature difference are proposed. Based on the system power loss analysis, it can be confirmed that, under low load conditions, the SMDM takes priority over the DMDM, and the controller of the idling motor should be shut down to avoid the additional excitation loss. While under middle to high load conditions, even torque distribution (β o = 0.5) is preferred if the temperature difference between the two IMs is small; otherwise, β o should be corrected based on dual-motor temperatures. The theoretical T sw derived without dealing with temperature difference is a function only of motor speed, while temperature difference correction of it should be conducted in actual operations based on motor resistance changing with temperature.  相似文献   

5.
Computational model is developed to analyze aerodynamic loads and flow characteristics for an automobile, when the rear wing is placed above the trunk of the vehicle. The focus is on effects of the rear wing height that is investigated in four different positions. The relative wind incidence angle of the rear wing is equal in all configurations. Hence, the discrepancies in the results are only due to an influence of the rear wing position. Computations are performed by using the Reynolds-averaged Navier-Stokes equations along with the standard k-ε turbulence model and standard wall functions assuming the steady viscous fluid flow. While the lift force is positive (upforce) for the automobile without the rear wing, negative lift force (downforce) is obtained for all configurations with the rear wing in place. At the same time, the rear wing increases the automobile drag that is not favorable with respect to the automobile fuel consumption. However, this drawback is not that significant, as the rear wing considerably benefits the automobile traction and stability. An optimal automobile downforce-to-drag ratio is obtained for the rear wing placed at 39 % of the height between the upper surface of the automobile trunk and the automobile roof. Two characteristic large vortices develop in the automobile wake in configuration without the rear wing. They vanish with the rear wing placed close to the trunk, while they gradually restore with an increase in the wing mounting height.  相似文献   

6.
Bus rollover accidents are receiving increasing attention due to the associated high fatality rate. In order to improve the bus structural performance during the rollover collision, it is necessary to investigate how the impact force is transferred within the bus superstructure. This paper introduced a method for studying the load transfer behavior of the bus superstructure during the standard rollover test by using the U * M index. A bus bay section was used as the sample structure to demonstrate the proposed method. The result of the paper reveals that the load transfer analysis based on the U * M index can provide engineers with the insight of the structural issues and the direction to improve the structural performance, which cannot be accomplished through the conventional finite element analysis.  相似文献   

7.
Recent developments in the aerospace and automotive industries have significantly affected the progress of modern manufacturing technologies, including the heat treatment of gear wheels. This view has been expressed in the works of Gräfen and Edenhofer (1999), Herring and Houghton (1995), Preisser et al. (1998) and Sugiyama et al. (1999). For ecological and economic reasons, however, traditional treatments are still in use. Additionally, the implementation of a new process in the aerospace industry is very difficult due to the safety precautions that are involved in this kind of production. In order to protect the surfaces of components from disadvantageous structural changes related to the hardening process (oxidation, decarburization and carburizing) galvanic copper plating is widely used even though the process is known to be harmful to the environment. On the other hand, as pointed out by Dawes and Cooksey (1965), it is commonly known that the most effective protection of a batch against these undesirable effects is a protective atmosphere applied during the heating. Therefore, the development of a fully controlled and repeatable process of gear wheel heat treatment under a protective atmosphere will reduce the global emission of toxic substances originating from galvanic copper plating and cooper stripping processes, while at the same time providing more effective protection of the parts.  相似文献   

8.
Solar road vehicles have very specific design requirements. This makes their aerodynamic characteristics quite different from classic sedan vehicles. In the present study, the computational model of a typical solar road vehicle was developed to investigate its aerodynamic forces and flow characteristics. Computations were performed assuming the steady viscous flow and using the Reynolds-averaged Navier Stokes equations along with the k-ω turbulence model. The obtained results indicate some important findings that are commonly not present for classic sedan vehicles. In particular, a contribution of the viscous drag force to the overall drag force is considerably larger (41 %) than it is the case for the standard passenger road vehicles, where the form drag force dominates over the viscous drag force. Surface pressure distribution patterns indicate a favorable aerodynamic design of this vehicle. In particular, larger pressure coefficients on the top of the vehicle body as compared to the bottom surface contribute to increasing a downforce and thus the vehicle traction. The airfoil-shaped crosssection of the designed cockpit canopy has favorable properties with respect to reduction of the aerodynamic drag force.  相似文献   

9.
In-cylinder charge density at top dead center is an important parameter of diesel engines and is influenced by intake pressure, intake temperature, and compression ratio. The effects of charge density on fuel spray, combustion process, and emissions were investigated by using a constant volume bomb and a heavy-duty diesel engine. Spray development resistance increased with the increase of the charge density in the constant volume bomb. It was found that short spray penetration was accompanied by a large spray cone angle in the former stage with high charge density. However, the equivalence ratio was lowered and the degree of homogeneity of the mixture was increased in the later stage owing to the rapid interaction of fuel and gas at a high mixing rate. Combining the first law of thermodynamics and the second law of thermodynamics for analysis, as the charge density increased, the gross indicated thermal efficiency (ITEg) was improved. However, pumping loss had to be considered with higher charge density. Under this condition, the brake thermal efficiency (BTE) trend was increased initially and decreased subsequently. Under high-load operation (1200 r/min BMEP, 2.0 MPa), the minimum charge density value of 44.8 kg/m3 was found to be reasonable. This charge density was suitable for combustion and brought about minimum exhaust energy and trade-off emissions. Moreover, by analyzing two operation conditions in terms of the maximum BTE with the Miller and the conventional cycles, compression temperature and combustion temperature were reduced in the Miller cycle with the charge density 44.8 kg/m3. A high Cp/Cv could improve the cylinder exergy/power conversion process by its positive effect of increasing the specific heat ratio. Owing to the interaction between a high Cp/Cv and exergy loss to heat transfer, the condition with the minimal charge density could produce more piston work.  相似文献   

10.
A four-wheel-independent-steering (4WIS) electric vehicle (EV) with steer-by-wire (SBW) system is proposed in this paper. The fast terminal sliding mode controller (FTSMC) is designed for the SBW system to suppress external disturbances. Taking unstructured and structured uncertainties into consideration, a robust controller is designed for the 4WIS EV utilizing μ synthesis approach and the controller order reduction is implemented based on Hankel-Norm approximation. Since sideslip angle is the feedback signal of robust controller and it is hard to measure, the extended Kalman filter (EKF) is employed to estimate sideslip angle. To evaluate the vehicle performance with the designed control system, step and sinusoidal steering maneuvers are simulated and analyzed. Simulation results show that the designed control system have good tracking ability, strong robust stability and good robust performance to improve vehicle stability and handing performance.  相似文献   

11.
The article concerns the dynamics of a four-axle 20 ton special purpose vehicle in the driver’s panicky defensive manoeuvre resulting from edge drop-off of wheels onto a soft shoulder. A calculation model in the PC-Crash software environment has been developed to include the complex mechanism of the soft soil response to the wheel movement. The analysis of the results indicates the danger manifested by strong wheels vibrations, instantaneous change of vehicle steerability characteristics and a high rate of increase of the yaw angle and vehicle pitch during braking with steered wheels turned. The calculations indicate an extremely adverse effect of the phase of vehicle oversteer which in the analysed motion of the vehicle lasts over 1.5 s. The calculations prove that in such a short time the driver has very little chance of any practical response to the non-typical behaviour of the vehicle which otherwise is, in general, understeered.  相似文献   

12.
马怀琳 《汽车技术》1994,(11):1-5,56
油封是汽车发动机,变速器,分动器和驱动桥等总成中的重要密封年。阐述了汽车用油封的密封机理,结构形式及各参数之间的关系,介绍了动力型油封的结构特点和性能特点,并对比分析了目前普遍用于制造油的4种合成橡胶材料的优,缺点,开发低摩擦油封是一个发展方向,论述了降低油封摩擦转矩的途径。  相似文献   

13.
NVH(Noise Vibration Harshness噪音振动平顺性)是新能源汽车行业衡量驱动电机的设计水平和制造质量的重要指标。为了从制造过程来分析和优化驱动电机的NVH性能,提升量产电机产品的制造质量,本文结合六西格玛DMAIC质量体系方法,应用到车用驱动电机产品的实际量产制造中,进行了制造产线中NVH相关的MSA(测量系统分析),利用FTA(故障树分析)得到了影响电机制造NVH的相关变量,通过相关性分析方法和最佳子集回归法得到了影响制造NVH的关键因素,优化并将改善点加入了产线NVH控制计划。本研究对于提升车用驱动电机的制造质量水平及建立车用驱动电机制造NVH开发体系具有重要意义。  相似文献   

14.
Wheel–rail contact calculations are essential for simulating railway vehicle dynamic behavior. Currently, these simulations usually use the Hertz contact theory to calculate normal forces and Kalker's ‘FASTSIM’ program to evaluate tangential stresses. Since 1996, new methods called semi-Hertzian have appeared: 5 Kik, W. and Piotrowski, J. A fast approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling. Paper presented at the 2nd Mini-conference on Contact Mechanics and Wear of Rail/Wheel Systems. July29–31, Budapest.  [Google Scholar] 7 Ayasse, J. B., Chollet, H. and Maupu, J. L. 2000. Paramètres caractéristiques du contact roue-rail. Rapport de Recherche INRETS n225, ISSN 0768–9756 (in French) [Google Scholar] (STRIPES). These methods attempt to estimate the non-elliptical contact patches with a discrete extension of the Hertz theory. As a continuation of 2 Ayasse, J. B and Chollet, H. 2005. Determination of the wheel–rail contact patch in semi-Hertzian conditions. Vehicle System Dynamics, 43(3) [Google Scholar], a validation of the STRIPES method for normal problem computing on three test cases is proposed in this article. The test cases do not fulfill the hypothesis required for the Hertz theory. Then, the Kalker's FASTSIM algorithm is adapted to STRIPES patch calculus to perform tangential forces computation. This adaptation is assessed using Kalker's CONTACT algorithm.  相似文献   

15.
This paper has been developed in the framework of the alternative beam T-junction solution previously propoused by the authors (Alcalá et al., 2013), with the scope of optimizing the behavior of buses and coaches upper structures modeled with beam type elements. The alternative beam T-junction model proposed by the authors, had a total of six elastic elements at the junction level allowing to modify the localized rigidity of any modeled T-junctions, therefore improving their behavior and avoiding the well known rigidity issue these elements have. A fundamental aspect behind the use of these alternative beam models is related to the necessity of correctly estimating the rigidity values of the elastic elements for each modeled T-junction. In this context, we propose applying a surrogate model for the reference calculations which is based on statistical Bayesian kriging predictors. Statistical predictions have the added value, with respect to deterministic solutions, of providing a quantification of uncertainty. The development of the kriging predictors has required the application of a statistical methodology including computer experiment design, computation of moments of inertia, graphical and ANOVA type sensitivity analysis and Monte Carlo computation of Bayesian inference. The results of the application have been a very satisfactory trade-off between accuracy of approximation (prediction) and computational cost. The surrogate kriging models also provide an useful tool for a better understanding of the input-output relationships involved in the reference computations.  相似文献   

16.
随着汽车的普及与发展,人们对汽车的驾乘体验、声音品质的要求越来越高,传动系NVH性能是其重要影响因素之一,主要体现为齿轮的啸叫噪声。文章介绍了乘用车传动系半消声室结构布局、技术指标与试验能力,五测功机布局通用性好、覆盖面全,能够满足前驱、后驱、四驱传动系台架NVH测试需求,为传动系NVH目标定义、NVH性能验证与优化提供支撑。  相似文献   

17.
A route information based driving control algorithm was developed for an RE-EV which consists of two motorgenerators, MG1 and MG2. A threshold power which controls the engine on/off to charge the battery was obtained by an optimization process using route information, such as the vehicle velocity and altitude. The threshold power allows the vehicle to travel to the final destination while making the final battery SOC close to SOC low. Using the threshold power, route based control (RBC) was proposed by considering the driver’s characteristics and traffic conditions using the driving data base. In addition, a relationship between the threshold power and various initial battery SOC was obtained by off-line optimization. The performance of the RBC was evaluated by simulation and human-in-the-loop simulation (HILS) for city driving. It was found from the simulation and HILS results that the RBC achieved approximately 4 % to 12 % reduction in fuel consumption compared to the existing charge depleting/charge sustaining (CD/CS) driving control.  相似文献   

18.
19.
20.
This paper presents a new control scheme for lateral collision avoidance (CA) systems to improve the safety of four-in-wheel-motor-driven electric vehicles (FIWMD-EVs). There are two major contributions in the design of lateral CA systems. The first contribution is a new lane-changing model based on vehicle edge turning trajectory (VETT) to make vehicle adapt to different driving roads and conform to drivers’ characteristic, in addition to ensure vehicle steering safety. The second contribution is vehicle semi-uncertainty dynamic model (SUDM), which is SISO model. The problem of stability performance without the information on sideslip angle is solved by the proposed SUDM. Based on the proposed VETT and SUDM, the lateral CA system can be designed with H robust controller to restrain the effect of uncertainties resulting from parameter perturbation and lateral wind disturbance. Single and mixed driving cycles simulation experiments are carried out with CarSim to demonstrate the effectiveness in control scheme, simplicity in structure for lateral CA system based on the proposed VETT and SUDM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号