首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
高速磁浮悬浮架柔性特征对曲线通过性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究高速磁浮悬浮架小曲线通过动力学性能,考虑高速磁浮悬浮架柔性振动,建立悬浮架有限元模型,并计算其弹性模态,建立高速磁浮整车车辆动力学模型;应用同济大学磁浮试验线线路条件、试验速度曲线及拟合的轨道不平顺,分析了悬浮架柔性振动对悬浮、导向电磁铁间隙、电磁力的影响;同时,建立了刚性悬浮架动力学模型与之对比. 研究结果表明:R400小曲线通过时,电磁铁动力学性能受悬浮架柔性振动的影响较大,两种模型的导向力相差约12.5 kN,悬浮力相差约6.0 kN;通过试验仿真比较,考虑悬浮架柔性的计算结果更接近于实测结果;悬浮架垂向和横向振动的主频分别为10.4 Hz和13.2 Hz,分别与前后悬浮框相对点头、反相摇头模态频率相近;在研究控制参数优化、悬挂参数优化、运行稳定性等高速磁浮关键问题时应考虑悬浮架的柔性振动.   相似文献   

2.
客运专线铁道车辆随机振动特性   总被引:1,自引:0,他引:1  
为分析客运专线车辆在轨道随机不平顺作用下的振动规律,提出了轨道随机不平顺人工短波的概念,给出了短波的模拟样本.在同时考虑轨道高低不平顺和水平不平顺的基础上,采用德国高速低干扰谱与人工短波样本合成的轨道随机不平顺样本作为车辆-轨道耦合振动系统的激励,对车辆的随机振动进行了分析.探讨了轮轨动作用力、车辆各部件随机振动特性及其随列车运行速度变化的规律.研究结果表明,随列车运行速度提高,客运专线车辆各部件的随机振动响应如振动加速度、轮轨力、位移等均呈显著增大的趋势,其中以轮对加速度的变化最为明显,构架加速度、车体加速度和轮轨力次之,位移变化相对较小.  相似文献   

3.
高速列车的振动特性直接影响旅客乘坐的舒适性和列车运行的安全性.为了分析不同线路条件和运行速度对高速列车振动特性的影响,建立了车辆-轨道耦合系统模型,并以德国高速轨道谱和我国干线轨道谱产生的轨道随机不平顺作为耦合系统的激励,通过Newmark数值积分和Matlab仿真,计算了高速车辆在高速线路和提速干线条件下车体、构架、轮对等车辆各部件和轨道部件的振动响应.研究结果表明,随着列车运行速度的提高,高速车辆各部件振动响应均显著增大;线路条件对高速列车轮对及轨道系统振动的影响较对车体系统振动的影响明显.  相似文献   

4.
为了研究EMS型磁浮列车起浮后与轨道相互耦合发生的自激振动对车辆安全性、舒适性造成的影响,建立了单磁铁悬浮系统的车体-悬浮架-轨道的动力学模型.分析了车-轨系统的稳定性及悬浮控制器和系统各主要参数对振动的影响,提出了系统各参数和稳定性关系的表达式,讨论了运用瞬时最优控制算法抑制车-轨自激振动的具体方法.数值仿真了在3组不同系统参数条件下瞬时最优控制对于自激振动的抑制效果.研究结果表明:车辆结构、悬浮控制器、轨道各主要参数在车-轨自激振动中相互影响;当仿真系统起浮10 s时,悬浮气隙振幅分别减少了59%、62%、5%,轨道振幅分别减少48%、94%、73%,表明了控制方法的有效性.   相似文献   

5.
轨道不平顺是列车振动的主要激扰源,对行车的安全性和乘客舒适性造成直接影响。以实测的轨道不平顺为基础,结合高速磁浮TR08型车辆结构特点以及深度神经网络的基本原理,利用TensorFlow构建神经网络表征轨道不平顺与车辆振动加速度的关系。提出了一种通过测量振动加速度进而构建神经网络实现对不平顺检测的方案。研究结果表明,深度神经网络预测的轨道不平顺值与真实值相对精度超过99%,且能够同时对高低和水平不平顺进行测量,为轨道不平顺测量新方法提供了理论基础。  相似文献   

6.
为研究直线电机地铁车辆系统在轮轨几何不平顺激振作用下的动态行为,基于车辆-轨道系统耦合理论,建立了考虑直线电机子系统的地铁车辆-轨道耦合系统动力学模型.应用该模型研究了车轮非圆化、钢轨焊接接头几何不平顺以及钢轨波磨对车辆和直线电机系统的振动响应、轮轨作用力及车辆稳定性等特性的影响.研究结果表明,几何不平顺中长波(大于1 m)影响气隙波动,短波(小于1 m)造成轮轨剧烈冲击振动,需特别注意钢轨焊接接头,其可使轮轨作用力增大1.5倍,气隙降低2~3 mm,轮轨甚至发生分离.   相似文献   

7.
针对永磁电动悬浮系统的垂向动态稳定性问题, 研究了永磁电动悬浮系统的临界稳定特性; 提出了一种永磁铁加常导线圈混合构成的新型Halbach阵列, 通过在永磁体表面缠绕有源常导线圈, 实现了永磁电动悬浮系统阻尼的主动控制, 并对比了新型Halbach阵列与其他2种主动电磁阻尼控制方案; 建立了新型Halbach阵列永磁电动悬浮系统垂向动力学模型, 并采用经典PID闭环控制方法设计了悬浮控制器, 分别在无外界干扰、外界扰动力干扰和轨道不平顺干扰3种情况下仿真分析了该系统的垂向动态稳定性。研究结果表明: 永磁电动悬浮系统在扰动力作用下将进行等幅震荡而不能稳定悬浮, 连续扰动力干扰下甚至可能撞轨; 提出的新型Halbach阵列具有磁场耦合计算方便、力调节范围大的优点; 设计的悬浮控制器能使系统稳定悬浮于额定气隙0.03 m的平衡位置, 且线圈电流为0, 不产生损耗, 仿真分析所得系统悬浮气隙和线圈电流与理论分析结果的相对误差小于0.01%;当出现轨道不平顺干扰时, 系统能快速稳定悬浮于额定气隙0.03 m的平衡位置, 稳定后的线圈电流仍为0, 实现了永磁电动悬浮系统的零功率平衡; 当外界扰动力为±1 500 N时, 系统能快速稳定悬浮于额定气隙0.03 m的平衡位置, 稳定后的线圈电流分别为29.68和-30.40 A, 表明新型Halbach阵列永磁电动悬浮系统能够实现垂向动态稳定。   相似文献   

8.
分析了EMS型磁浮车辆的动力稳定性,建立了简化的车轨耦合振动系统动力学模型,推导了轨道各模态单独作用下系统的时变线性化动力学方程。通过对方程的化简,得到系统状态矩阵和特征方程的相关系数,根据系统渐进稳定条件下系数之间的关系,推导了系统动力稳定应满足的基本条件,并给出了快速判断动力稳定性的判据。当判据值大于1时,系统稳定;当判据值小于1时,系统不稳定。研究结果表明:当6种工况的速度分别为100、180、260、340、420、500km·h-1,抗弯刚度分别为4.83×1010、3.86×1010、3.38×1010、3.38×1010、3.86×1010、4.83×1010 N·m2,轨道梁长度分别为24.8、22.4、20.4、20.4、22.4、24.8m时,求得对应的稳定性判据值分别为1.639、0.624、2.339、0.870、3.252、0.571,对应的Lyapunov特性指数分别为-3.580×10-2、2.443×10-1、-3.910×10-2、1.515×10-1、-5.471×10-2、1.939×10-1,工况1、3、5的稳定性判据值大于1,对应的Lyapunov特性指数小于0,系统是稳定的,工况2、4、6的稳定性判据值小于1,对应的Lyapunov特性指数大于0,系统是不稳定的,2种判断结果一致,因此,提出的判据是有效的。而且稳定性判据解释了随着车辆速度增加而出现共振的原因,揭示了车辆速度、车轨系统主要参数与磁浮车辆动力稳定性之间的关系,避免了高维动力学微分方程求解的复杂性,工程应用简便。  相似文献   

9.
为了探究地震对高速列车和桥梁的影响,建立车辆-桥梁空间耦合系统模型。将规格化的地震波作为激励,同时考虑轨道随机不平顺的影响。采用新型显式积分法求解系统方程。分析不同烈度地震作用下车桥耦合系统的动力响应。数值结果表明,地震烈度在桥梁的抗震设防烈度范围内时,桥梁的振动加速度和挠度响应均符合规范的限值要求。车辆运行平稳性的Sperling指标相对加速度指标较为宽松,当地震烈度为7度及以上时,车辆已不能平稳地运行于桥梁之上。在相对较弱的地震作用下,轨道随机不平顺对桥梁的垂向加速度响应影响明显,不应忽略。  相似文献   

10.
为了更换、维修中低速磁浮车辆任意一组悬浮架,研发了磁浮车辆悬浮架检修设备。该设备为3 m的活动轨道,分为上下两层,上层可以在车辆悬浮架从车辆上拆下后向下移动,或安装时向上移动,同步性良好。当上层轨道与两侧轨道接平,磁浮车辆可以开到上面。重点介绍了该设备的设计思路、主体结构及在500 mm位移时接触力的有限元计算方法;介绍了该设备上、下梁调整定位锁紧装置,如何快速实现活动轨道与两边固定轨道的精确对接设计;介绍了保证升降平稳的导向结构,该设备样机经试验测试达到预期效果。  相似文献   

11.
磁浮列车静悬浮车轨耦合振动对比分析   总被引:1,自引:1,他引:0  
为研究二系悬挂中置与端置的两种三悬浮架低速磁浮列车的车轨耦合振动特性,依据牛顿第二定律建立了其垂向车轨耦合动力学模型. 首先通过动力学方程分别分析了两种磁浮列车车体和悬浮架之间的耦合关系,然后研究了两种磁浮列车悬浮架均存在0.09° 的初始角位移时的动力学特性,最后研究了两种磁浮列车中二系悬挂对悬浮架作功的差异. 研究结果表明:与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,车体与悬浮架之间的耦合关系更少;当两种磁浮列车悬浮架均存在0.09° 的初始角位移时,采用二系悬挂中置的磁浮列车与采用二系悬挂端置的磁浮列车相比,前者具有更小的车体位移、车体垂向振动加速度、轨道梁振动位移和悬浮间隙波动;以上4个参数前者最大值分别为0.005 mm、0.004 m/s2、0.004 mm和0.005 mm;而后者最大值分别为0.023 mm、0.02 m/s2、0.021 mm和0.02 mm;与二系悬挂端置的磁浮列车相比,二系悬挂中置的磁浮列车,其二系空气弹簧对悬浮架作功更小,仅为前者的50%.   相似文献   

12.
磁浮列车单铁悬浮车桥耦合振动分析   总被引:1,自引:1,他引:0  
为研究单铁悬浮车桥耦合振动,将悬浮控制系统、车辆结构、弹性轨道梁及桥梁安装系统作为整体系统,建立整体系统的磁浮列车的悬浮控制-弹性桥梁-机械结构垂向耦合振动模型,以不同频率的外力激扰模拟磁浮列车不同的速度下对桥梁的作用,分析了不同梁型在整体系统耦合条件下的跨中挠度与振动加速度的变化。研究结果表明:单铁悬浮稳定后,简支梁跨中挠度约为两跨连续梁悬浮处挠度的2.5倍;以200km.h-1车速通过桥梁时其挠度略小于400km.h-1车速通过工况,但前者再次达到稳定状态所需时间约为后者的1/3;车辆以相同速度通过桥梁时,连续梁悬浮处跨中挠度约为简支梁的40%,且前者振动加速度小于后者;仿真过程中桥梁安装临界刚度范围为(5.5~6.5)×107 N.m-1;两跨连续梁动力学性能较简支梁更为优秀。  相似文献   

13.
磁浮列车明线交会横向振动分析   总被引:5,自引:2,他引:3  
为了研究气动力对磁浮列车运行稳定性的影响,以上海磁浮列车为研究对象,采用动网格技术,通过求解三维可压缩非定常N—S方程对磁悬浮列车在相对速度860km/h交会时的气动力进行数值模拟;同时将车体、悬浮架作为弹性体,悬挂系统作为弹簧一阻尼单元,建立了详细的系统动力学模型,对考虑列车交会瞬态压力冲击作用下的高速磁浮列车进行了横向振动分析。计算结果表明,流场数值计算出的最大压力波幅值与实车试验结果两者差距小于6%;仅考虑轨道不平顺时,磁浮列车的横向振动较小,而在考虑磁浮列车高速运行时产生的交会压力波的情况下,车体却产生了较大的横向振动,底架最大横向加速度达1.5m/s^2,经过二系悬挂的缓冲作用后振动明显减小,悬浮架最大横向振动加速度约为0.7m/s^2。  相似文献   

14.
为探究中低速磁浮车辆-桥梁耦合系统的振动特性,对其在上海临港中低速磁浮试验基地开展了现场动力学试验,研究了车速和桥梁结构形式对耦合系统动力响应的影响;试验车辆采用(悬挂)中置式悬浮架,试验桥梁为25 m混凝土简支梁和25 m钢结构简支梁;为明确2种桥梁的固有振动特性,对其进行了模态测试;提取了不同工况下车辆-桥梁耦合系...  相似文献   

15.
基于传递矩阵法的车辆振动特性分析   总被引:1,自引:0,他引:1  
针对车辆系统的振动特性,建立一种柔性车体动力学模型,根据车辆结构的局部相似性,将车辆系统划分为多个子结构,利用拉普拉斯变换推演了子系统的传递矩阵,并且将其应用于整个车辆系统.应用传递矩阵比较分析了车辆系统的振动模态和简谐激励响应,结合拉普拉斯逆变换分析了轨道不平顺度引起的时域随机振动响应.结果表明,传递矩阵法分析车辆系统动态特性具有较好的精确性,车体加速度随车辆运行速度增加而增大;而且传递矩阵法有利于简化模型,减少计算量.  相似文献   

16.
中低速磁浮车辆研究综述   总被引:3,自引:0,他引:3       下载免费PDF全文
基于电磁悬浮型中低速磁浮列车的工作原理,阐述了中低速磁浮各核心子系统(悬浮导向系统、牵引电机、走行机构、制动系统、轨道-桥梁结构等)的技术特征,综合分析了各子系统存在的技术问题和解决方案;梳理了 日本Linimo列车、韩国EcoBee列车、长沙磁浮快线、北京磁浮S1线和西南交通大学自主研发的(悬挂)中置式磁浮列车的发展...  相似文献   

17.
为改善高速列车运行舒适度和车下悬挂设备的振动水平,建立了车辆-设备系统垂向动力学模型,推导了车辆系统振动加速度频率响应函数;结合轨道不平顺激励谱函数计算了车下悬挂设备振动加速度均方根,联合人体舒适度加权滤波函数计算了车体振动参考点的垂向舒适度指标;引入目标级联分析(ATC)法逐层分解车辆-设备系统振动指标,构建了车辆-设备系统两层指标分解数学模型,采用指数罚函数策略协调两层振动指标之间的耦合问题;提出了以车辆运行舒适度和车下悬挂设备振动加速度为指标的多目标优化方法,建立了以车下设备悬挂刚度和阻尼为设计变量的优化模型;联合车下设备悬挂参数动力吸振器(DVA)设计法对比探讨了ATC法在复杂车辆系统参数优化设计中的应用效果。分析结果表明:与DVA设计法相比,ATC法优化后车辆中部舒适度在300 km·h-1工况下提高了8.5%,设备振动水平减小了约20%;在全速域区间,ATC法对车体中部的振动衰减是DVA设计法的2倍,且对设备的振动衰减比DVA设计法大4.5 dB;与优化前相比,ATC法优化后车辆中部舒适度指标最大提升了15%,设备振动加速度减小了0.18 m·s-2。由此可见,ATC法可以运用于复杂轨道车辆结构参数优化设计中,能有效改善车辆系统的振动水平,也可为车下设备悬挂参数优化设计提供指导。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号