首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

This paper investigates strategies that could achieve an 80% reduction in transportation emissions from current levels by 2050 in the City of Philadelphia. The baseline daily lifecycle emissions generated by road transportation in the Greater Philadelphia Region in 2012 were quantified using trip information from the 2012 Household Travel Survey (HTS). Emissions were projected to the year 2050 accounting for population growth and trends in vehicle technology for both the Greater Philadelphia Region and the City of Philadelphia. The impacts of vehicle technology and shifts in travel modes on greenhouse gas (GHG) emissions in 2050 were quantified using a scenario approach. The analysis of 12 different scenarios suggests that 80% reduction in emissions is technically feasible through a combination of active transportation, cleaner fuels for public transit vehicles, and a significant market penetration of battery-electric vehicles. The additional electricity demand associated with greater use of electric vehicles could amount to 10.8 TWh/year. The use of plug-in hybrid electric vehicles (PHEV) shows promising results due to high reductions in GHG emissions at a potentially manageable cost.  相似文献   

2.
To compare transportation greenhouse gas mitigation options with other sectors, we construct greenhouse gas mitigation supply curves of near-term technologies for all the major sectors of the US economy. Our findings indicate that motor vehicles and fuels are attractive candidates for reducing GHGs in the near and medium term. Transport technologies and fuels represent about half of the GHG mitigation options that have net-positive benefits – so-called “no regrets” strategies – and about 20% of the most cost-effective options to reduce GHGs to 10% below 1990 levels by 2030.  相似文献   

3.
This paper investigates the well-to-wake energy consumption and greenhouse gas emissions of several key SOX abatement options in marine transportation, ranging from the manufacture of low sulfur fuels to equipping the vessel with suitable scrubber solutions. The findings suggest that a scrubber system, used with current heavy fuel oils, has the potential to reduce SOX emissions with lower well-to-wake energy consumption and greenhouse gas emissions than switching to production of low sulfur fuels at the refinery. A sensitivity analysis covering a series of system parameters shows that variations in the well-to-tank greenhouse gas emissions intensity and the energy efficiency of the main engine have the highest impacts in terms of well-to-wake emissions.  相似文献   

4.
Transport sector restructuring to achieve deep GHG emission cuts has attracted much attention because transportation is important for the economy and inflexible in greenhouse gas emission reduction. The aim of this paper is to simulate transition towards low carbon transportation in the European Union until 2050 and to assess the ensuing macroeconomic and sectorial impacts. Transport restructuring is dynamically simulated using a new transport-oriented version of the computable general equilibrium model GEM-E3 which is linked with the PRIMES-TREMOVE energy and transport sectors model. The analysis draws from comparing a reference scenario projection for the EU member-states up to 2050 to alternative transport policy scenarios and sensitivities which involve deep cutting of CO2 emissions. The simulations show that transport restructuring affects the economy through multiple channels, including investment in infrastructure, the purchasing and manufacturing of new technology vehicles, the production of alternative fuels, such as biofuels and electricity. The analysis identifies positive impacts of industrial activity and other sectors stemming from these activities. However, the implied costs of freight and passenger transportation are of crucial importance for the net impact on GDP and income. Should the transport sector transformation imply high unit costs of transport services, crowding out effects in the economy can offset the benefits. This implies that the technology and productivity progress assumptions can be decisive for the sign of GDP impacts. A robust conclusion is that the transport sector decarbonisation, is likely to have only small negative impacts on the EU GDP compared to business as usual.  相似文献   

5.
In addition to fuels, passenger and freight transport require vehicles and infrastructure. As with fuels, the provision of goods and services that are needed for the operation of transport involves the consumption of energy and the emission of greenhouse gases. The energy consumed and greenhouse gases emitted due to fuel use by vehicles are referred to as direct requirements, while indirect requirements of energy and greenhouse gases are embodied in the goods and services mentioned before. Indirect requirements form a significant part of the total energy and greenhouse gases required for a given transport task. They depend on the transport mode, ranging from 10% to 50% for freight transport and from 25% to 65% for passenger transport. These indirect requirements have to be taken into account when options for reducing the energy consumption and greenhouse gas emissions of the transport sector are to be evaluated.  相似文献   

6.
The paper challenges the conventional view that the movement of goods through supply chains must continue to accelerate. The compression of freight transit times has been one of the most enduring logistics trends but may not be compatible with governmental climate change policies to cut greenhouse gas emissions by 60–80% by 2050. Opportunities for cutting CO2 emissions by ‘despeeding' are explored within a freight decarbonisation framework and split into three categories: direct, indirect and consequential. Discussion of the direct carbon savings focuses on the trucking and deep-sea container sectors, where there is clear evidence that slower operation cuts cost, energy and emissions and can be accommodated within current supply chain requirements. Indirect emission reductions could accrue from more localised sourcing and a relaxation of just-in-time (JIT) replenishment. Acceleration of logistical activities other than transport could offset increases in freight transit times, allowing the overall carbon intensity of supply chains to reduce with minimal loss of performance. Consequential deceleration results from other decarbonisation initiatives such as freight modal split and a shift to lower carbon fuels. Having reviewed evidence drawn from a broad range of sources, the paper concludes that freight deceleration is a promising decarbonisation option, but raises a number of important issues that will require new empirical research.  相似文献   

7.
In this paper, potential natural gas and renewable natural gas supply pathways and natural gas vehicles (NGVs) have been selected and evaluated with regards to well-to-wheel energy expended, greenhouse gas (GHG) emissions, and regulated (air pollutant) emissions. The vehicles included in the evaluation are passenger cars, light-duty vehicles (LDVs), and heavy-duty vehicles (HDVs) for road-transport applications, and a short-range passenger vessel for maritime transport applications. The results show that, compared to conventional fuels, in both transport applications and for all vehicle classes, the use of compressed and liquefied natural gas has a 15–27% GHG emissions reduction effect per km travel. The effect becomes large, 81–211%, when compressed and liquefied renewable natural gas are used instead. The results are sensitive to the type and source of feedstock used, the type of vehicle engine, assumed methane leakage and methane slip, and the allocated energy and environmental digestate credits, in each pathway. In maritime applications, the use of liquefied natural gas and renewable natural gas instead of low sulfur marine fuels results in a 60–100% SOx and 90–96% PM emissions reduction. A 1% methane slip from a dedicated LNG passenger vessel results, on average, in 8.5% increase in net GHG emissions.  相似文献   

8.
Transport is Australia’s third largest and second fastest growing source of greenhouse gas (GHG) emissions. The road transport sector makes up 88% of total transport emissions and the projected emissions increase from 1990 to 2020 is 64%. Achieving prospective emission reduction targets will pose major challenges for the road transport sector. This paper investigates two targets for reducing Australian road transport greenhouse gas emissions, and what they might mean for the sector: emissions in 2020 being 20% below 2000 levels; and emissions in 2050 being 80% below 2000 levels. Six ways in which emissions might be reduced to achieve these targets are considered. The analysis suggests that major behavioural and technological changes will be required to deliver significant emission reductions, with very substantial reductions in vehicle emission intensity being absolutely vital to making major inroads in road transport GHG emissions.  相似文献   

9.
Reducing greenhouse gas (GHG) emissions from transportation in the context of the climate change issue and the associated Kyoto Agreement of 1997 is a challenge. Since urban transportation is a major contributor to greenhouse gases, measures are required to reduce these emissions. Given that during peak periods, road vehicles propelled by petroleum fuel‐based internal combustion engines produce a high level of GHG emissions due to stop and go operations, measures to improve traffic flow can play an effective mitigation role. This paper describes a simulation‐based methodology and a case study for the quantification of GHG emission reduction owing to advanced traffic control systems.  相似文献   

10.
As decision-makers increasingly embrace life-cycle assessment (LCA) and target transportation services for regional environmental goals, it becomes imperative that outcomes from changes to transportation infrastructure systems are accurately estimated. Greenhouse gas (GHG) reduction policies have created interest in better understanding how public transit systems reduce emissions. Yet the use of average emission factors (e.g., grams CO2e per distance traveled) persists as the state-of-the-art masking the variations in emissions across time, and confounding the ability to accurately estimate the environmental effects from changes to transit infrastructure and travel behavior. An LCA is developed of the Expo light rail line and a competing car trip (in Los Angeles, California) that includes vehicle, infrastructure, and energy production processes, in addition to propulsion. When results are normalized per passenger kilometer traveled (PKT), life-cycle processes increase energy use and GHG emissions up to 83%, and up to 690% for smog and respiratory impact potentials. However, the use of a time-independent PKT normalization obfuscates a decision-maker’s ability to understand whether the deployment of a transit system reduces emissions below a future year policy target (e.g., 80% of 1990 emissions by 2050). The year-by-year marginal effects of the decision to deploy the Expo line are developed including reductions in automobile travel. The time-based marginal results provide clearer explanations for how environmental effects in a region change and the critical life-cycle processes that should be targeted to achieve policy targets. It shows when environmental impacts payback and how much reduction is achieved by a policy-specified future year.  相似文献   

11.
Electrification of the transport sector is considered as a solution to reduce greenhouse gases (GHGs) emissions and achieve sustainable mobility. Specifically in the case of electrification of passenger vehicles, various industrial and policy initiatives have been introduced. In this article, we present and assess three approaches – pro-technology, pro-simplicity and mix (of the aforementioned approaches) – to achieve target emission reductions in the Norwegian road transport sector. We also assess the influence of including ‘Guarantee of Origin’ certification for the electricity production in accounting for typical consumption electricity mix in Norway.Results show that for the same reductions in tail-pipe GHG emissions, pro-technology, pro-simplicity, and the mix scenario offer 22%, 29% and 28% reduction in the life cycle GHG emissions respectively, compared to the reference scenario in year 2020. However, the pro-simplicity scenario requires 25% reduction in vehicle-km driven compared to the pro-technology scenario, which provides the same passenger car mobility as in the reference case. When the GHG intensity of the electricity mix used to power EVs is corrected to account for actual consumption mix in Norway, a 13% reduction in the net GHG benefit of pro-technology scenario is observed.  相似文献   

12.
The transition to low-carbon transportation fuels plays a key role in ongoing efforts to combat climate change. This analysis seeks to optimize potential alternative fuel portfolios that would lead to a 10% reduction in fuel carbon intensity by 2020 as required under California’s Low Carbon Fuel Standard (LCFS).We present a novel, probabilistic modeling approach for evaluating alternative fuel portfolios based on their marginal greenhouse gas (GHG) abatement costs. Applied to a case study region in Northwest California, our model enables us to quantify the financial cost of GHG reduction via each fuel pathway, as well as for a portfolio deployed to meet the LCFS target. It also enables us to explore the sensitivity of the alternative fuel portfolio, evaluating the impact of fluctuating prices, fuel carbon intensities, and technology penetrations on the makeup of the portfolio and on the average cost of GHG abatement.We find that battery electric vehicles play a critical role, as they offer the lowest-financial-cost significant abatement in almost all plausible scenarios. However, electric vehicles alone will not be sufficient to reach the target; low-carbon biofuels can be expected to play a role in the achievement of 2020 Low Carbon Fuel Standard targets.  相似文献   

13.
For the UK to meet their national target of net zero emissions as part of the central Paris Agreement target, further emphasis needs to be placed on decarbonizing public transport and moving away from personal transport (conventionally fuelled vehicles (CFVs) and electric vehicles (EVs)). Electric buses (EBs) and hydrogen buses (HBs) have the potential to fulfil requirements if powered from low carbon renewable energy sources.A comparison of carbon dioxide (CO2) emissions produced from conventionally fuelled buses (CFB), EBs and HBs between 2017 and 2050 under four National Grid electricity scenarios was conducted. In addition, emissions per person at different vehicle capacity levels (100%, 75%, 50% and 25%) were projected for CFBs, HBs, EBs and personal transport assuming a maximum of 80 passengers per bus and four per personal vehicle.Results indicated that CFVs produced 30 gCO2 km−1 per person compared to 16.3 gCO2 km−1 per person by CFBs by 2050. At 100% capacity, under the two-degree scenario, CFB emissions were 36 times higher than EBs, 9 times higher than HBs and 12 times higher than EVs in 2050. Cumulative emissions under all electricity scenarios remained lower for EBs and HBs.Policy makers need to focus on encouraging a modal shift from personal transport towards sustainable public transport, primarily EBs as the lowest level emitting vehicle type. Simple electrification of personal vehicles will not meet the required targets. Simultaneously, CFBs need to be replaced with EBs and HBs if the UK is going to meet emission targets.  相似文献   

14.

This paper outlines the issues involved in the problem of global warming. The road transport sector's contributions to this problem are then detailed and various policy options to reduce greenhouse gas emissions from private cars are discussed. The paper then describes a model which forecasts greenhouse gas emissions from cars. The effects of various policy options are then modelled and the results compared. Policies considered include: raising fuel prices in terms of the UK government's commitment to increase road fuel duties; subsidising public transport in terms of reduced public transport fares; and a tax differentiated by engine size.  相似文献   

15.
Transportation sector accounts for a large proportion of global greenhouse gas and toxic pollutant emissions. Even though alternative fuel vehicles such as all-electric vehicles will be the best solution in the future, mitigating emissions by existing gasoline vehicles is an alternative countermeasure in the near term. The aim of this study is to predict the vehicle CO2 emission per kilometer and determine an eco-friendly path that results in minimum CO2 emissions while satisfying travel time budget. The vehicle CO2 emission model is derived based on the theory of vehicle dynamics. Particularly, the difficult-to-measure variables are substituted by parameters to be estimated. The model parameters can be estimated by using the current probe vehicle systems. An eco-routing approach combining the weighting method and k-shortest path algorithm is developed to find the optimal path along the Pareto frontier. The vehicle CO2 emission model and eco-routing approach are validated in a large-scale transportation network in Toyota city, Japan. The relative importance analysis indicates that the average speed has the largest impact on vehicle CO2 emission. Specifically, the benefit trade-off between CO2 emission reduction and the travel time buffer is discussed by carrying out sensitivity analysis in a network-wide scale. It is found that the average reduction in CO2 emissions achieved by the eco-friendly path reaches a maximum of around 11% when the travel time buffer is set to around 10%.  相似文献   

16.
Mitigation of greenhouse gas emissions from transportation has become increasingly important and challenging especially for developing countries. This paper takes the inter-city passenger transport in China as a case, and develops a system dynamics model for policy assessment and CO2 mitigation potential analysis. It is found that the future demand for China’s inter-city passenger transport is expected to be large, with the turnover volume growing at a rate of 9% per annum and amounting to 6600 billion p-km in 2020. Major emissions reduction potential exists in inter-city passenger transport. In 2020, comparing to the case without any specific policies stressing mitigation, the reduction of CO2 emissions ranges from 26% to 32% under those scenarios with policy controls. Sensitivity analysis reveals that the CO2 mitigation will be best achieved by accelerating the development of railway network, together with slowing down the extension of highway network and imposing fuel taxes.  相似文献   

17.
This paper evaluates the contribution of the road transport sector, in a typical small developing country, to global greenhouse gas emissions. An inventory of transport emissions, using the Intergovernmental Panel on Climate Change methodology, is presented for the base year 1997. The Motor Vehicle Emission Inventory computer based model, with inputs adjusted to the fleet and conditions at hand, is used to predict contributions of different classes of vehicles and to forecast the corresponding emissions for the year 2020. Emissions reduction and the sensitivity to changes in factors such as fleet age, fleet technology, average speed and travel volume are assessed. Scenarios are developed to explore the feasibility and benefits of two different mitigation approaches. The first approach stresses the reduction potential of measures related to the fleet age and new technology application. The second addresses the effectiveness of transport planning and demand reduction in mitigating emissions. The air quality impact of these scenarios is presented. The results bring to light the essence of the problem that technical improvements alone, in the existing fleet, will not be able to offset impacts due to the growth in future travel demand. Policy settings to counterbalance the increase in emissions are investigated in that context.  相似文献   

18.
The transportation industry—particularly light-duty vehicles—is a significant contributor of greenhouse gasses, accounting for about one-third of overall emissions in the U.S. Research to date has studied various factors that impact travel behavior of residents with varying socio-economic characteristics. However, research on the socio-economic characteristics of residents and their impact on environmental burdens within a single urban region, as measured by fuel consumption and vehicular emissions, is recognized as under-represented in the U.S. planning and transportation literature. This study focuses on the Detroit region, Michigan, a unique case study due to the scale of suburbanization and urban decline, yet representative of many mid-western cities. The article explores how socio-economic characteristics impact travel patterns and environmental burdens within six Detroit region neighborhoods. Data on individual travel behavior and personal vehicle characteristics gathered from a mail survey enabled an analysis into how associated environmental burdens varied with socio-economic composition. The analysis explores contributions to environmental burdens between poorer urban and wealthier suburban populations.  相似文献   

19.
The study develops scenarios regarding the introduction of electric vehicles to the passenger vehicle fleet of Norway to reach the 2020 Norwegian greenhouse gas reduction target and a more extreme target to limit global temperature increase to two degrees. A process-based life cycle assessment approach is integrated with a temporally variable inventory model to evaluate the environmental impacts of these scenarios. We find that greenhouse gases in the reference scenario increase by 10% in 2020 in comparison to 2012; while for the more intensive improvements in conventional vehicles, this increase is reduced to 2%. For electric vehicles deployment scenarios, although the fleet share will reduce the tailpipe greenhouse gas emissions by 8–26%, with the upper end representing the two-degree reduction target, emissions reductions over the entire life cycle are only 3–15%. Electric vehicles also reduce emissions of NOx, SO2 and particulates reducing acidification, smog formation and particulate formation impacts, however, with addition of large numbers of electric vehicles significant trade-offs in toxicity impacts are found.  相似文献   

20.
Transporting more than 55 million passengers per day, buses are the main transit mode in Brazil. Most of these vehicles use diesel oil and this situation causes dependence on oil, extensive greenhouse gas emissions and increasing air pollution in urban areas. In order to improve this situation the options for Brazilian cities include the use of alternative fuels and new propulsion technologies, such as hybrid vehicles. This article proposes a procedure for evaluating the performance of a recently developed Brazilian hybrid-drive technology. A simple procedure is presented to compare hybrid-drive buses with conventional diesel buses in urban operation focusing on fuel economy and the potential for reducing diesel oil consumption through the use of hybrid-drive buses. Field tests carried out by the authors indicate that fuel consumption improvement through the use of hybrid-drive buses would certainly exceed 20%, resulting in lower fuel costs and reduced carbon dioxide (CO2) emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号