首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
基于大位移非线性弹性理论的广义变分原理,考虑了加劲梁轴向压缩应变能和剪切应变能的影响,建立了斜拉桥与T构协作体系空间耦合自由振动的大位移不完全广义势能泛函,通过约束变分导出了协作体系斜拉桥的加劲主梁的纵向振动、竖向挠曲振动、横向挠曲振动、扭转振动及加劲主塔的纵向振动及扭转振动的基础微分方程,并以数值计算验证推导的有效性.  相似文献   

2.
本文给出了悬索桥横向—竖向—扭转耦合非线性自由振动的一般微—积分方程,通过引入无量纲量,得到了无量纲化方程,通过用线性问题主模态来表示解的表达式,得到N—耦合的二阶非线性常微—积分方程的三个方程组。  相似文献   

3.
用插值摄动法[1] 求解两类弱非线性振动问题 .其一是保守系统的非线性自由振动 ;其二是参数振动 .前者由于把求解微分方程的问题转化成为求解二次代数方程 ,计算过程十分简单 ;后者由于把一个二阶微分方程的求解转化成为两次积分问题 ,也使计算过程简化 .有算例、算例表明 ,本文结果是可靠的  相似文献   

4.
机车传动系统扭转与轮对纵向耦合振动稳定性   总被引:1,自引:0,他引:1  
为研究机车打滑时传动系统扭转与轮对纵向耦合运动作用下传动系统的稳定性,建立了机车单轮对传动系统动力学模型,考虑了轮对回转与纵向振动自由度,对非线性系统微分方程在平衡点附近线性化,并根据线性化系统在状态空间中的特征值判断系统的稳定性,绘制了振动系统临界稳定曲线.分析结果表明:由于轮轨粘着系数的负斜率,传动系统的扭转振动与轮对的纵向振动为不稳定的自激振动,两者与轮对运行速度和轴重有关,速度越大,轴重越小,振动越稳定,因此,传动系统的扭转与轮对的纵向阻尼能很好抑制这种自激振动.  相似文献   

5.
从三维轴对称土模型出发,考虑桩周土体的三维波动效应,对均质滞回材料阻尼土中完整端承桩在垂直协和激振力作用下的纵向振动特性进行分析,求解得到桩顶频域响应解析解、复刚度和速度导纳,利用卷积定理和傅里叶逆变换,求得半正弦脉冲激振力作用下桩顶速度导纳时域响应半解析解.  相似文献   

6.
从三维轴对称土模型出发,考虑桩周土体的三维波动效应,对均质滞回材料阻尼土中完整端承桩在垂直协和激振力作用下的纵向振动特性进行分析,求解得到桩顶频域响应解析解、复刚度和速度导纳,利用卷积定理和傅里叶逆变换,求得半正弦脉冲激振力作用下桩顶速度导纳时域响应半解析解.  相似文献   

7.
阐述了非均质材料零件设计优化的数学模型,并采用灵敏度分析以及最速下降法对其各个材料区域的材料性能进行设计优化,得到最佳材料性能参数后,再从非均质材料数据库中找到相应的工程材料,合成满足设计要求的非均质材料零件.该方法为设计者提供了切实可行的非均质材料零件的材料设计方法.  相似文献   

8.
基于弹性杆件的纵向振动理论,研究基桩简化模型的损伤识别方法。用弹簧代替损伤的自由-弹性支承杆的损伤材料,通过分析位移导纳,建立损伤截面的刚度、损伤位置和杆件固有频率之间的函数关系,利用不同的损伤模态频率实现对自由-弹性支承杆的损伤进行定位和损伤程度的判断。数值模拟给出了很好的损伤识别结果。  相似文献   

9.
为了降低车体的弹性振动,分析了激发车体垂向弹性振动的振动传递路径,建立了某型高速客车车体有限元模型。利用多体动力学软件SIMPACK的接口模块FEMBS建立了铁道客车刚柔耦合系统动力学模型,研究了牵引拉杆纵向刚度对车体弹性振动的影响。考虑了牵引拉杆最基本的牵引和制动功能,使用变刚度牵引拉杆来抑制车体的弹性振动。仿真结果表明:牵引拉杆纵向刚度不会改变车体刚体振动,仅对车体弹性振动有影响;高速客车的车轮偏心导致车体产生严重的弹性振动,一般发生在车辆低速运行情况下;使用变刚度牵引拉杆可以在保证牵引和制动功能的情况下明显降低车体垂向弹性振动与纵向振动,不影响车体横向振动。  相似文献   

10.
为研究机电耦合作用下齿轮箱体和牵引电机的振动幅值、频谱分布及其随高速列车行驶速度的变化趋势, 分析了三相逆变器输出电压谐波频率分布与牵引电机谐波转矩, 建立了传动系统扭振模型; 基于直接转矩控制理论与车辆系统动力学理论, 搭建了牵引电机控制模型和高速列车多体动力学模型; 通过Simulink和SIMPACK联合仿真平台对比了恒力矩输入与含有谐波转矩的力矩输入模型, 分析了不同速度下牵引电机谐波转矩对高速列车齿轮箱体和牵引电机振动特性的影响。分析结果表明: 当高速列车以250 km·h-1的速度匀速运行时, 齿轮箱体大齿轮上方纵向振动、小齿轮上方纵向与垂向振动受牵引电机谐波转矩影响显著, 在700 Hz主频处振动加速度幅值显著增大, 该频率恰为牵引电机输出转矩基波频率的6倍; 在谐波转矩的影响下, 牵引电机在52 Hz主频处横向振动加速度幅值增加52.78%, 在49 Hz主频处垂向振动加速度幅值增加18.95%;随着高速列车速度的增加, 齿轮箱体纵向与牵引电机各向振动加速度逐渐增加, 牵引电机谐波转矩对齿轮箱体纵向振动加速度均方根的影响逐渐减小, 在6倍基波频率处, 齿轮箱体小齿轮上方和牵引电机纵向与垂向振动加速度均先增大后减小, 在速度为250 km·h-1时达到极大值, 且齿轮箱体和牵引电机的垂向振动受6倍基波频率谐波转矩的影响比纵向振动更为明显, 而其横向振动特性几乎不受谐波转矩的影响。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号