首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
研究目的:为确定曲线段道床横向阻力分布及其对无缝线路稳定性的影响,对某曲线半径为800 m的曲线线路开展道床横向阻力现场原位测试,测试直线、缓和曲线及圆曲线段的道床横向阻力。基于测试结果,建立直线-缓和曲线-圆曲线一体化无缝线路稳定性计算模型,分析缓和曲线段道床横向阻力分布对无缝线路稳定性的影响,从而为无缝线路设计提供指导。研究结论:(1)道床横向阻力测试中应避免反向顶推轨枕,以确保前后测试数据的一致性和重复性;(2)曲线段道床横向阻力存在显著差异,圆曲线中点、直线测点的道床横向阻力分别是缓和曲线中点阻力值的1.21倍、1.37倍;(3)缓和曲线段无缝线路的最小临界温升小于圆曲线段,并受缓和曲线段道床横向阻力分布的影响;(4)为避免缓和曲线段无缝线路先于圆曲线段线路发生失稳,确定了道床横向阻力不同分布下曲线半径300~1 000 m对应缓和曲线中点道床横向阻力最小值;(5)本研究成果可为无缝线路稳定性分析提供指导。  相似文献   

2.
无缝线路稳定性分析有限元模型   总被引:8,自引:1,他引:7  
利用有限元法建立包含钢轨、扣件、轨枕和道床阻力为一体的轨道框架模型。研究在温度力作用下无缝线路的臌曲失稳问题。推导相应的数值计算公式并编制了计算程序。轨道框架模型由4种单元组成:用考虑钢轨非线性变形的平面梁单元代表钢轨;无几何尺寸的两结点弹簧单元模拟钢轨扣件;弹性基础上的普通平面梁单元表示轨枕;弹簧单元模拟道床的横向、纵向阻力,并考虑了道床阻力的非线性特性。运用该模型,分析道床横向阻力、轨枕失效、曲线半径和线路初始弯曲对无缝线路稳定性的影响,得到不同工况下钢轨横向位移-温度曲线、钢轨内应力分布及钢轨和轨枕的横向变形分布曲线。  相似文献   

3.
运用有限元方法建立直线和曲线有砟轨道无缝线路的稳定性分析模型,讨论道床横向阻力、线路初始不平顺等多个因素的影响,分析结果表明:当钢轨横向位移超过0.5 mm左右时,其增长的速率明显加大。因此建议综合考虑钢轨横向位移增长速率突变处的温升、我国规定的允许温升及计算温升作为高温时的轨温预警限值,并采取绿-黄-橙-红四级预警机制。  相似文献   

4.
梁灿 《铁道工程学报》2012,(1):26-29,56
研究目的:无缝线路在长轨条范围消除了轨缝,在轨温改变时钢轨的伸缩受到限制,当轨温升高时,钢轨内将产生巨大的温度压力,温度压力超过一定限值时,钢轨可能会臌曲变形,使轨道丧失稳定。有些特殊地段,如桥梁、无缝道岔区,由于结构特点,还会在钢轨内产生多余的附加力,在半径较小的曲线地段,无缝线路抗失稳能力降低,对无缝线路稳定性提出了更高的要求。研究结论:在特殊地段,如桥梁、无缝道岔区及小半径曲线地段,传统的提高无缝线路稳定性措施有一定的局限性,通过采用外侧支挡或内侧加拉杆、使用整体道床、使用小阻力扣件、使用伸缩调节器、设置道床插板等措施,可以有效地解决特殊地段无缝线路的稳定性。  相似文献   

5.
以在武汉纸坊站和武昌南站进行道床横向阻力现场测试获取的标准道床横向阻力不同的测点实测数据作为初始参数,利用有限元软件建立无缝线路稳定性有限元模型并进行计算,分析站区无缝线路的稳定性。研究结果表明:轨枕端头道砟缺失区段标准道床横向阻力偏小,且容许温升小于规范要求,应及时维修;利用移动加载车进行定点静态加载试验,推导出轨枕横向位移与车测钢轨横向位移的线性关系;通过移动加载试验,提出移动加载时轨枕横向位移不应大于0.60 mm的限值;通过理论计算得出移动加载时的轨枕横向位移曲线,现场发现轨枕横向位移超过0.60 mm的区段道床明显破坏,应及时补充道砟并捣固以确保无缝线路的稳定性。  相似文献   

6.
戴月辉  方永明 《铁道学报》2000,22(Z1):67-70
大型养路机械维修无缝线路会使轨道的稳定性下降,本文应用有限元法,将轨道视为具有一定横向刚度的有限长梁,并具有一定的初始弯曲,钢轨和轨枕的连接为一系列弹簧,轨枕在道床上的阻力是随位移变化的非线性函数,采用荷载增量法迭代求解无缝线路的稳定性.并根据现场的实测道床阻力来对作业后的轨道稳定性进行监控和预测.  相似文献   

7.
根据轨道结构特点以及轨道胀轨变形特征,将扣件、轨枕和道床模拟成一个弹性约束单元,导出约束单元的扭转刚度,将线路初始弯曲变形部分模拟成初始弯曲变形单元,从而建立考虑线路初始弯曲变形部分位置发生变化、不同初始弯曲变形弦长和初始弯曲变形矢度以及不同钢轨类型和曲线半径对无缝线路临界温升影响的无缝线路稳定性研究有限元法。算例分析结果表明:曲线半径越大,初始弯曲变形弦长越小,60kg·m-1钢轨线路比50kg·m-1钢轨线路的稳定性更高;曲线半径越小,初始弯曲变形弦长越大,50kg·m-1钢轨线路比60kg·m-1钢轨线路的稳定性更高。对于曲线半径较小的线路,初始弯曲部位越靠近线路纵向两端,线路的稳定性越差;扣件、轨枕和道床组成的约束单元刚度降低,临界温升也随之降低,会影响无缝线路的稳定性。  相似文献   

8.
混凝土桥面轨道纵向位移阻力的研究   总被引:1,自引:0,他引:1  
对桥上无缝线路,梁轨之间存在由相对位移引起的轨道纵向位移阻力,使桥梁与轨道形成一个相互作用,相互约束的力学平衡体系,因此,轨道纵向位移阻力是分析无缝线路钢轨和桥梁受力的重要参数。由于道床的散粒体特性以及现场测试条件的限制,国内外在这方面的试验研究较少,轨道纵向位移阻力与梁轨相对位移和轨道竖向受载的关系,可采用梁体与钢轨之间产生一系列的相对位移,并测定钢轨的受力大小来确定。本文通过室内模拟试验,介绍了轨道纵向位移阻力的试验分析结果,轨道纵向位移阻力是分析无缝线路钢轨和桥梁受力的重要参数。本文通过两个1:4缩尺室内模拟结构试验,介绍了轨道纵向位移阻力的试验分析结果。  相似文献   

9.
米轨钢枕铁路轨排框架较轻、线路阻力小,应用于无缝线路存在适应性问题。以坦桑尼亚中央线为例,针对米轨钢枕线路的结构特征与特殊运营条件,分析了不同曲线半径、不同阻力等条件下的线路稳定性、钢轨强度,评估铺设无缝线路的适应范围。研究表明:在R300m曲线段无缝线路强度、稳定性可直接通过验算;对R≤300m曲线段采取轨枕加密措施后,强度及稳定性满足要求;但考虑坦桑尼亚地区温度变化较大,允许温升下稳定性安全余量有限,故应在R≤300m小半径曲线段设置必要的加强措施;建议道床选取有砟肩的型式,砟肩高300 mm、宽300 mm。  相似文献   

10.
R=350m曲线铺设无缝线路的研究   总被引:2,自引:0,他引:2  
论文介绍了最大轨温差幅度达到80.3℃、R=350m曲线上铺设无缝线路的用其结果,突破了TB2098-89关于无缝线路铺设曲线半径不小于400m、最大轨温差幅度不超过72℃的限制。在分析小半径曲线铺设无缝线路特点的基础上,根据TB2098-89和TB2034-88,对秦皇岛地区R=350m曲线铺设无缝线路的稳定性和强度进行检算,提出采用Ⅲ型轨枕、I级石碴的轨道结构强轨道横向稳定性的试验方案,并在无缝线路铺设以后,对道床向阻力进行了测试,验算的最大温差幅度比实际值富裕39.7℃,表明试验曲线无缝线路稳定性是有保证的。通过对实际铺设的无缝线路长达400天、通过总重87MGT的观测,无缝线路没有出现失稳现象,钢轨纵向位移和实际锁定轨温变化值都在允许范围内,钢轨磨耗2.7mm较以前的有缝线路7mm减少2.5倍,取得了经济效益。  相似文献   

11.
戴月辉  方永明 《铁道学报》2000,22(B05):67-70,81
大型养路机械维修无缝线路会使轨道的稳定性下降,本文应用有限元法,将轨道视为具有一定横向刚度的有限长梁,并具有一定的初台弯曲,钢轨和轨枕的连接为一系列弹簧,轨枕在道床上的阻力是随位移变化的非线必函数,采用荷载增量法迭代求解无线路的稳定性。并根据现场的实测道床阻力来对作业后的轨道稳定性进行监控和预测。  相似文献   

12.
运用有限单元法和无缝线路横向鼓曲稳定性理论,建立无缝线路横向稳定性计算模型,分析钢轨初始弯曲矢度、波长、导曲线半径及道床横向阻力对无缝线路稳定性的影响,提出提高无缝线路横向稳定性的具体措施。  相似文献   

13.
小半径曲线无缝线路稳定性有限元分析   总被引:1,自引:1,他引:0  
研究目的:利用有限元法解决在温度力作用下无缝线路特别是小半径曲线的臌曲失稳问题。 研究方法:建立了包含钢轨、扣件、轨枕和道床阻力为一体的轨道框架模型,推导了相应的数值计算公式并编制了有限元程序。该模型还考虑了横向力对无缝线路稳定性的影响。 研究结果:得到了不同工况下钢轨横向位移一温度曲线,并与“统一公式”进行了比较。 研究结论:有限元方法在研究无缝线路稳定性方面是可行和有效的;有限元方法能计算出不同工况下的轨道结构从锁定轨温直到破坏全过程的横向位移,相对于“统一公式”,该方法可考虑各种复杂的工况,能更精确地反映轨道横向变形的趋势,从而为铁路工务部门养护维修提供理论指导。  相似文献   

14.
为分析列车制动力和温度荷载对小半径曲线上带减振扣件整体道床轨道横向力学特性的影响,为小半径曲线上无砟轨道设计提供理论依据。参考贵阳地铁1号线带减振扣件的整体道床结构形式,简化钢轨-桥梁-墩台垂向耦合力学模型,应用有限单元法,计算分析不同列车制动力和温度力对小半径曲线桥梁轨道结构横向力学特性的影响。计算分析结果表明:从无砟轨道稳定性角度出发,对于在有小半径曲线桥梁上的带减振扣件的承轨台整体道床轨道,建议当圆曲线半径为450 m时,扣件横向刚度要大于5×107 N/m;当扣件横向刚度为5×107 N/m时,圆曲线半径要大于450 m;当扣件横向刚度为1×108 N/m时,圆曲线半径要大于350 m。当圆曲线半径为450 m时,为减小制动力对曲线钢轨的影响,建议尽量减小曲线长度,缩小钢轨横向位移值。  相似文献   

15.
随着我国铁路提速进程的推进,对轨道平顺性的要求日益提高,有砟轨道无缝线路稳定性的研究就显得更加重要。无缝线路稳定性的设计参数(道床横向阻力、轨道原始弯曲、钢轨温升幅度、扣件阻矩系数)具有明显的随机性,运用概率方法对无缝线路稳定性进行分析是十分必要的。本文基于蒙特卡洛方法,分析无缝线路稳定性可靠度,并且采用单参数敏感性分析法,通过改变各参数的平均值,而保持其变异系数不变,对设计参数进行敏感性分析。结果表明,设计参数中的道床横向阻力、轨道原始弯曲、钢轨温升幅度对于无缝线路稳定性可靠度具有较高的敏感性,而扣件阻矩系数对可靠度的影响较小。并且得出一些对于保障行车安全和提高线路养护维修的效益有一定参考价值的结论。  相似文献   

16.
无缝线路轨道稳定性简便计算方法   总被引:1,自引:1,他引:1  
张向民  陈秀方 《铁道学报》2007,29(1):124-126
无缝线路稳定性分析是无缝线路的理论基础和关键技术。本文在考虑轨道原始弯曲和非线性横向道床阻力的前提下,在轨道变形曲线假设为半波正弦曲线的情况下,应用内外力矩平衡法,进行无缝线路轨道稳定性分析,推导钢轨温度力计算公式。应用多元函数条件极值理论推导最不利的轨道弯曲波长,从而建立简便实用的无缝线路稳定性计算公式。将此模型的计算结果与《铁路线路设备大修规则》中铺设无缝线路允许温差表的要求进行了对比,两者计算结果较为接近。  相似文献   

17.
1 引言无缝线路胀轨跑道严重威胁铁路运输安全 ,而无缝线路大修施工进行道床清筛、抬道、换枕作业时 ,严重地削弱了接头阻力、扣件压力和道床的纵向、横向、竖向阻力以及轨道框架刚度与温度力等赖以平衡的阻力 ,当线路的一系列阻力不足以抵抗钢轨温度力时 ,线路就会失稳 ,发生胀轨跑道。因此 ,在夏季高温季节施工容易出现胀轨跑道 ;冬季可能出现拉大缓冲区轨缝 ,造成钢轨、焊缝、夹钣、螺栓等拆断现象 ,使线路稳定受到破坏 ,严重威胁行车安全。因此 ,弄清清筛之后无缝线路锁定轨温变化 ,对做好防胀工作有着相当重要意义。1990年在湘桂线北…  相似文献   

18.
简支梁桥上无缝道岔温度力与位移影响因素分析   总被引:13,自引:1,他引:12  
将道岔、梁和墩台视为一个系统,建立简支梁桥上无缝道岔的有限元模型。根据变分原理和“对号入座”法则建立有限元方程组。以铺设一组43号道岔的18跨32 m混凝土简支梁桥为例,研究影响简支梁桥上无缝道岔受力与位移的因素,如支座布置形式、轨温变化幅度、梁温差、扣件阻力、道床阻力、限位器间隙、岔枕刚度、限位器位置、梁跨长度和桥墩刚度等。计算结果表明,简支梁桥上无缝道岔在温度荷载作用下,钢轨温度力在限位器处和限位器前梁端处同时出现两个峰值;与桥上无缝线路相比,桥上无缝道岔桥墩处的最大受力显著增大;当梁与导轨同向伸缩时,岔区内钢轨位移较大;限位器应布置在梁跨中部;限位器间隙对桥上无缝道岔的受力与位移有双重影响;岔区内钢轨的受力与位移随桥墩刚度增大而减小;岔区内采用较大的扣件阻力和道床阻力,岔区外采用较小的扣件阻力和道床阻力,可以降低钢轨附加温度力。  相似文献   

19.
无砟轨道钢轨碎弯成因分析   总被引:1,自引:0,他引:1  
对无砟轨道无缝线路钢轨碎弯成因进行了分析,认为钢轨纵向温度力、线路横向阻力和钢轨初始弯曲是影响轨条臌曲的主要因素.应用有限单元法建立了包括道床、扣件的钢轨碎弯分析模型,讨论了初始曲线线型及参数、升温幅度、轨道类型和线路阻力等对轨条碎弯幅值的影响.计算表明碎弯是无砟轨道无缝线路胀轨的表现,应严格控制初始弯曲和保证扣件横向阻力稳定,防止形成严重的轨条碎弯,影响行车安全.  相似文献   

20.
桥上纵连板式无砟轨道无缝线路力学性能分析   总被引:1,自引:0,他引:1  
基于有限元法,考虑钢轨、无砟道床、滑动层、桥梁等结构的相互作用关系,建立桥上纵连板式无砟轨道无缝线路纵-横-垂向空间耦合模型,进行滑动层摩擦系数、扣件纵向阻力、无砟道床伸缩刚度等对桥上纵连板式无砟轨道无缝线路的受力和变形影响规律的研究.结果表明:滑动层减弱了桥梁、轨道间的相互作用,当滑动层摩擦系数为0.1~0.5时,无缝线路伸缩力仅为22.821~55.361 kN,远小于一般桥上无缝线路结构;滑动层摩擦系数越小越有利于轨道和桥梁结构的安全使用;底座板/轨道板的伸缩刚度减小会明显增大部分轨道和桥梁的受力,伸缩刚度折减至10%时,伸缩力会增大近6倍,因此应该注意控制底座板和轨道板的开裂现象;扣件的纵向阻力变化对轨道和桥梁结构的受力和变形几乎没有影响,但为了防止钢轨爬行或断缝值超限,扣件阻力不宜太小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号