首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为分析道路交通状态波动范围,提出了一种基于模糊信息粒化与支持向量机组合预测的建模方法。分析了道路交通状态波动特点和交通参数选择原则,以模糊理论和时间序列预测为基础,通过模糊信息粒以15 min时间窗将样本数据模糊化,得到Low、R、Up这3组时间序列;并利用支持向量机模型分别对其进行预测,获得道路交通状态的波动范围与变化趋势。实例分析时,在验证数据采集路段属性相近的前提下,用该组合模型对早、晚高峰和平峰等3个时段的交通波动状态进行验证,验证结果有较高精度,能有效预测交通状态波动情况。  相似文献   

2.
为使用高空视频识别和预测道路交通状态,提出基于三维卷积神经网络-深度神经网络(3DCNN-DNN)的交通状态预测方法. 将道路切分为D 个路段,每个路段视频片段时长 m s,基于典型3DCNN结构C3D识别路段视频片段交通状态;建立道路? 个历史时段、D 个路段的交通状态矩阵Φ ,将道路交通状态预测问题转化为以Φ 为输入,有限交通状态为输出的分类问题,构建基于DNN的短时交通状态预测模型原型;建立交通视频数据集,对DNN预测模型原型的隐藏层数量、神经元数量及训练批大小进行测试优化,提出有4 隐藏层,各层神经元数量为64/128/128/64,训练批大小为64 的优化模型DNN*.测试结果表明:C3D视频交通态识别平均F1 值为95.71%,DNN*道路交通状态预测准确率为91.18%,比DNN线性分类、KMeans 、KNN、SVM和线性分类分别高6.86%、57.85%、62.26%、26.47%、43.14%;C3D能提供准确的交通状态矩阵,3DCNN-DNN可有效识别和预测道路视频交通状态.  相似文献   

3.
为了识别入口匝道汇入车辆与主线直行车辆间的交通冲突,开展了匝道合流区车辆交通冲突识别研究.本文结合车辆运动信息,考虑车辆尺寸对交通冲突的影响,构建了基于后侵入时间(Post Encroachment Time, PET)算法的匝道合流区冲突识别模型;给出车辆交通冲突严重程度的确定方法,采用仿真分析验证了所建模型的有效性.结合实测交通数据,确定了PET阈值范围.结果表明,采用后侵入时间算法的匝道合流区交通冲突识别准确率为91.71%,说明该模型能有效识别匝道合流区的潜在冲突.研究成果可为车路协同环境下匝道合流车辆提供安全预警,进而减少车辆碰撞事故的发生,提升整个交织区域的道路交通安全水平.  相似文献   

4.
缓和曲线长度对车辆行驶轨迹的影响   总被引:3,自引:0,他引:3  
为揭示自由流交通状态下,缓和曲线长度对车辆行驶轨迹的影响规律,在预瞄最优曲率模型的基础上,引入S-K(弧长-曲率)平面线形模型,提出了面向公路路线安全评价的驾驶员方向控制模型.仿真结果表明:车辆进入曲线段时,行驶轨迹存在朝曲线内侧偏移的运动趋势;出曲线段时,车辆行驶轨迹趋于朝曲线外侧偏移.缓和曲线长度对车辆行驶轨迹的影响显著,缓和曲线越长,车辆行驶轨迹侧向偏差越小,反之则越大.对于二级公路对称基本型平曲线设计,缓和曲线长度建议采用0.4~0.6倍圆曲线半径为宜.  相似文献   

5.
提出了一种基于蒙特卡罗模拟的利用交通流参数实现交通状态辨识的方法.采 用 FANNY 算法实现了四种交通状态的聚类分析;利用蒙特卡罗模拟方法建立了 SVC 交 通状态辨识模型;分别构建了固定窗口模型和滑动窗口模型对交通状态进行辨识并综合 评价.分析结果表明:该方法能够对实时交通流参数进行准确辨识,尤其是构建的滑动窗 口模型,对交通状态辨识平均精度、召回率和 F 度量分别为 97.98%、94.64%和 96.21%.本方 法可为分析高速公路交通状态演化规律和发展趋势,建立预测预警、应急处置和信息发 布等应急运行机制提供科学方法和数据支撑.  相似文献   

6.
为了在道路设计阶段预测车速,保证公路几何线形的协调性,建立了考虑侧向容许加速度、纵向加速度、制动减速度、制动热衰退和环境速度与线形参数关系的模型,计算了期望速度;建立了公路-驾驶者-车辆-环境仿真系统,对在三维路面上的行驶车辆进行仿真,得到并分析了试验道路的运行速度曲线.结果表明:(1)为有效控制速度波动,应取相近的曲线半径和直线长度,且直线不宜过长;(2)出弯道加速长度大于进弯道减速长度,且二者都大于回旋线长度;(3)山区路线由多个急弯构成时,速度曲线频繁波动的部分原因是车辆自身旋转动能和平动动能的相互转化;(4)运行速度协调性方法不适用于四级公路的线形评价;(5)偏角越小,轨迹对弯道的切角作用越大,弯道车速越高.  相似文献   

7.
为了研究停车场出入口处车辆驶入驶出对连接路段车辆速度的影响,对停车场规模、驶入驶出率、出入口道路长度等影响因素进行分析,引入时间障碍率参数,利用时间障碍率来反映停车对路段车辆的影响,将停车影响作为路段车辆的交通阻抗,在BPR路阻函数模型的基础上建立主路车流受停车影响的车辆速度模型。运用VISSIM仿真软件进行停车场出入口处仿真,与车速模型计算结果进行对比分析。结果表明,车速模型计算结果与仿真结果相差较小,车速模型具有一定的准确性。  相似文献   

8.
为了描述拥挤交通流中车辆排队的演化规律,以基于二流理论建立的当量排队长度模型为依据,运用微积分方法,针对单车道路段和多车道路段分别推导出当量排队长度变化率模型,并利用VISSIM模拟数据对模型进行了验证.结果表明:当交通流处于拥挤状态时,当量排队长度变化率近似等于交通波波速;采样间隔内当量排队长度变化率与实际排队长度变化率接近,误差法和熵方法证明,采样间隔越大,两者越接近,因此,提出的模型可以定量描述拥挤交通流中车辆排队的演化速率.  相似文献   

9.
为了研究城市施工路段的车辆逐日变道行为,考虑施工路段车辆行驶特性,建立了微观元胞自动机模型;为了描述车辆逐日出行的变道位置改变,建立了宏观变道位置日变模型;结合微观模型与宏观模型进行数值模拟,分析了演化天数、每日仿真时间、车辆密度和可接受度等对两车道平均车速大小及波动、各位置变道概率、车辆时空演变及交通流相变等交通特征的影响。结果表明:随着车辆密度的增加,两车道的平均车速均降低,通行车道车速振荡幅度增加,车速变化频率加快;车辆变道位置随着演化天数而向前转移且趋于稳定;车辆密度提高时,通行车道交通流由自由相转化为堵塞相的现象增加;各位置变道概率对可接受度在(1,2)间变化时不敏感。  相似文献   

10.
为准确高效地追踪识别城市区域交通路况信息,提供合理的交通出行策略,针对原始的隐马尔可夫模型(hidden markov model,HMM)初始状态参数难以选择且训练过程极易陷入局部最优解的问题,提出了一种改进的隐马尔可夫模型的交通拥堵态势识别机制,有效地拟合了城市道路相邻交叉口交通拥堵状况.将粒子群优化(particle swarm optimization,PSO)算法引入到隐马尔可夫模型的训练中,结合Baum-Welch算法分别对该模型的状态数等参数进行优化,最后根据Viterbi算法聚类出城市道路交叉口最佳拥堵状态序列.根据采集的真实交通流和GPS数据、车辆延误时间特征数据进行实验,其结果表明,改进的隐马尔可夫模型在道路交通拥堵识别的准确率和稳定性上有明显提升.  相似文献   

11.
城市信号控制路网中的路段行程时间估计方法   总被引:1,自引:0,他引:1  
为了精确检测城市信号控制路网中的路段动态行程时间,分析了路段流量受交通信号控制策略影响的波动规律,提出了基于交通量图偏移的路段行程时间计算方法。研究了不同断面交通量图的相似性,根据最大相似度时交通量图的偏移,计算了断面间路段动态行程时间,并与调查结果进行了比较。比较结果表明:在城市路网封闭路段,平峰、高峰的不同时间长度内(5、10、20 min),平均行程时间最大平均相对误差为7.1%,因此,计算方法可行。  相似文献   

12.
为探究天气和道路等特征,以及交通流、天气、道路及时间等多维动态特征之间的交互作用对实时事故风险预测模型精度的影响,本文基于京哈高速公路北京段的事故数据,以及匹配的交通传感器数据、天气数据和道路特征等,构建4个数据集,分别为只包含交通流变量,包含交通流变量、天气及时间特征变量,包含交通流变量、道路及时间特征变量,包含交通流变量、天气、道路及时间特征变量。从考虑多维动态特征的交互效应出发,基于深度交叉网络,提出一种新的实时事故风险预测模型。结果显示,本文所构建的深度交叉网络模型比其他几种实时事故风险预 测方法显示出更高的精度。模型的AUC值(Area Under Curve)可达0.8562,在0.2的概率阈值下, 可以正确分类84.26%的非事故数据和77.55%事故数据。结论表明,本文采用的多维动态特征交互样本条件下的深度交叉网络模型能够有效地预测高速公路交通事故,可为我国高速公路安全管理部门提供理论与技术支持。  相似文献   

13.
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.  相似文献   

14.
传统感应线圈的交通状态估计方法已无法满足准确性和实时性的状态估计需要,为此提出了基于联网公交车辆实时速度的交通状态估计模型。所提模型借助实时信息采集系统的高效性和准确性的优势,对道路交通运行状态进行估计,同时利用卡尔曼滤波算法对交通状态变量进行更新。基于历史观测数据对更新后的交通状态变量进行修正,进而得到交通状态的估计值。通过采集数据并进行大量的实验,研究结果表明:基于联网公交实时速度的状态估计模型,在各种交通环境条件和占有率下,估计值误差指数(变异系数) 均小于15%,最大仅为13.15%;状态估计修正模型与状态估计模型相比,估计值误差指数下降了2%,总体误差优化性能提升了11.87%。在确保实时性和高效性的同时,基于联网公交车辆实时速度的交通状态估计模型解决了传统道路交通状态估计方法准确性低的问题。  相似文献   

15.
随着物联网、云计算和大数据在智能交通领域的普及应用,传统的以道路断面为研究对象的预测方法已经无法满足智能网联技术发展的需求.本文以车道断面为研究对象,提出一种基于组合深度学习(Combined Deep Learning,CDL)的城市快速路车道级速度预测模型.该模型利用基于信息熵的灰色关联分析提取空间特征变量,采用长短期记忆神经网络提取空间特征变量的时间特征,并利用门限递归单元神经网络得到预测结果.通过北京市东二环路车道断面实测微波数据验证发现,提取车道交通流的时空特征,CDL模型能够很好地拟合不同车道不同时段的速度变化趋势,可有效地实现车道速度的单步及多步预测,且该模型的预测精度和稳定性均优于传统预测模型.  相似文献   

16.
为分析高速公路中道路瓶颈造成的堵塞现象,本文改进KKW (Kerner-Klenov-Wolf) 模型, 建立跟驰规则;综合考虑车间距和车速对车辆换道的影响,建立自由换道和强制性换道规则;并对高速公路中不同车流量条件下,道路瓶颈上游的堵塞区域分布、换道行为特征和车道上交通参数的变化情况进行仿真研究。结果表明:在给定的交通量条件下,汇流车道的拥堵区域长度处于动态平衡状态,不会随时间而变化,且道路瓶颈前的汇流行为会导致目标车道上严重的速度下降,汇流车道和目标车道上车辆速度变化趋同;从换道集群特征来看,道路瓶颈前因高交通流量形成的低速汇流车辆倾向于以小集团的方式统一进行换道,造成目标车道上剧烈的交通震荡;瓶颈消失后,交通恢复时间随进口交通流量的上升而线性增长。  相似文献   

17.
信号交叉口对城市道路的通行能力以及车辆的燃油消耗具有重要影响。本文提出一种在自动驾驶车辆和人工驾驶车辆混合交通流环境下的自动驾驶车辆的轨迹优化方法。基于交叉口信号灯的配时方案,构建车辆旅行时间估计模型,并以自动驾驶车辆燃油消耗最小以及通行效率最大为目标,构建自动驾驶车辆轨迹优化模型,对车辆进行动态轨迹规划和控制。车辆轨迹滚动优化模型采用高斯伪谱法进行离散化求解,并基于SUMO仿真平台对模型结果进行验证。仿真结果表明,自动驾驶车辆可以通过优化自身控制变量影响人工驾驶车辆的运行状态,减少交通流的排队以及时走时停现象。本文提出的车辆轨迹优化方法对于降低车队整体燃油消耗、提升车队平均速度、缩短平均行程时间具有重要作用。  相似文献   

18.
交通拥挤严重影响了道路交通的安全性和运行效率,如何对交通拥挤状态进行判别,并预测下一时刻交通状态的变化趋势,是提高交通管理水平的一个关键.利用马尔可夫链建立了交通状态预测模型,实例表明该模型对短期交通状态预测具有良好的适用性.  相似文献   

19.
了解路段旅行时间随交通状况变化特性对利用探测车等新式交通检测技术估计交通状态非常重要.基于交通微观仿真模型,分析了路段旅行时间随交通状况的变化特性,验证了平均路段旅行时间是否能够采集通畅、拥挤到堵塞这三个状态,以及是否能细分这三个交通状态.结果表明:(1)平均路段旅行时间能够判断上述三个状态;(2)在拥挤阶段,随着交通状态恶化,平均路段旅行时间逐步增加,因此能够细分拥挤状态为多个子状态,但由于在通畅阶段,即便流量增加,平均路段旅行时间基本不变,因此无法细分通畅状态,细分通畅状态需要流量信息;(3)路段旅行时间在拥挤状态时处于双峰分布,难以用少量的探测车提供的数据可靠地估计平均路段旅行时间.  相似文献   

20.
沙尘环境下,沙、尘土及其他异物会影响驾驶员的视线,让驾驶员额外增加辨别道路条件和周围交通状况的反应时间,带来一定的交通安全隐患.为探讨沙尘环境对道路交通流的影响,本文建立了基于沙尘环境下驾驶行为的跟驰模型(SDM).线性稳定性分析和数值模拟结果表明:沙尘环境下,SDM的稳定区域缩小,交通流出现小的扰动后,难以恢复到稳定状态;而且,交通流受沙尘影响越严重,车辆速度的离散性越大,加速度的波动幅度也越大.可见,沙尘环境使交通流处于不安全的状态,易引发道路交通事故.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号