首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《轨道交通》2009,(8):54-54
135平方米的展台,展示了北京新建轨道交通已使用或即将运营的各种减震降噪轨道产品、北京多条线路成功铺设的道床隔振技术、具有高级减振降噪效果的钢弹簧浮置板,以及高效减振降噪的道碴垫,和在4号、5号线铺设的具有中高级减振降噪效果的梯式轨枕等产品。  相似文献   

2.
为研究列车通行对综合交通枢纽振动噪声的影响,以成渝高铁沙坪坝站为工程背景,通过现场试验实测了站房候车厅、站台、轨道板的振动加速度以及候车厅、站台区域、轨行区的辐射声压.通过对实测信号分别进行了时域分析和1/3倍频程分析,探究了列车作用下站房的振动传递规律及噪声辐射特性.结果表明:在列车运行荷载作用下,站房与站台的结构振动优势频段为10.0~80.0 Hz,振动随振源距离的增大而减小,站台到候车厅总振级衰减最大值达到13.5 dB;轨道板峰值振动加速度级出现在400.0 Hz处,约为101.0 dB;对候车厅而言,噪声声压级的优势频段为20.0~2 500.0 Hz,列车进站总声压级比列车出站高0.5~1.3 dB(A);对站台而言,噪声的优势频段为125.0~1 000.0 Hz,列车出站总声压级为86.3 dB(A),比列车进站时高1.3 dB(A);对轮轨噪声自身,其优势频段为200.0~2 500.0 Hz,列车进站噪声总声压级为91.1 dB(A),较列车出站时高3.2 dB(A).  相似文献   

3.
在区域轨道交通一体化的背景下,为充分发挥换乘车站作用,最大程度实现旅客出行无缝衔接,研究区域轨道交通换乘车站行车因素对乘客换乘的影响。在分析换乘系统设备设施布置和流线组织冲突基础上,提出车站换乘工作组织的评价指标,并以成都市犀浦站为实际案例,使用AnyLogic仿真软件对犀浦站内城际铁路与地铁的同站台换乘系统进行仿真。通过对不同行车因素情境下乘客换乘过程及评价指标的仿真实验分析,找出换乘环节中的瓶颈环节,提出适应行车因素和乘客换乘需求的犀浦站同站台换乘优化方案。所提出的考虑行车因素的行车客运一体化车站仿真模型及分析方法能够为区域轨道交通体系下车站的换乘组织、行车作业和客运作业提供有效建议。  相似文献   

4.
采用触发采集方式现场实测了某下沉式地铁车辆段咽喉区钢轨、道床、地面、楼板及盖板的振动加速度, 采用插入损失、1/3倍频谱、Z振级曲线拟合等方法分析了现场实测数据, 进而分析了下沉式地铁车辆段咽喉区的振源特性与地铁振动沿盖板和不同层楼板的传播规律。分析结果表明: 在频域上, 钢轨比道床振动频带更宽, 没有明显的主频段, 其振动分布在800 Hz以内, 道床则有明显的主频段, 主要分布在80~200 Hz; 下沉式地铁车辆段地下1、2层钢轨至道床振动衰减幅度分别约为29.9、10.4 dB; 列车引起盖板的振动响应随测点与行车轨道中心线距离的增大呈线性衰减规律, 其线性衰减率约为0.2 dB·m-1; 由于边墙对振动的反射与折射, 振动传至盖板端部时出现局部放大现象; 列车无论在地铁车辆段端部还是在中间股道行车, 随着测点与行车轨道中心线距离的增大, 车辆段盖板振级在2.5、5.0 Hz低频处基本不变, 在10 Hz处衰减缓慢, 在25、40、80 Hz中高频处衰减明显; 列车在地下1、2层行车时诱发的振动的向上传播呈逐层衰减规律, 列车在地下1层行车引起的盖板振动比其在地下2层行车时大约16.1 dB; 下沉式地铁车辆段咽喉区轨道接头多、道岔多的特点导致该区域盖板车致振动响应突出, 需重点对该区域进行减振设计。  相似文献   

5.
针对运行列车引起的轨道交通桥梁结构噪声问题,总结了国内外轨道交通桥梁结构噪声的辐射特性、预测方法、产生机理、控制措施及工程应用等方面的研究成果,展望了未来的研究重点和发展方向。研究结果表明:轨道交通桥梁结构噪声主要集中于200 Hz以下的低频段,峰值一般出现在40~100 Hz;如何使用更先进的声源识别技术将桥梁结构噪声从综合噪声中分离出来,是准确分析桥梁结构噪声频谱特性和空间分布特性的关键;现有的桥梁结构噪声预测方法包括声学边界元法、统计能量分析等,声学边界元法的计算效率较低,统计能量分析主要用于钢桥噪声预测,发展大跨度混凝土桥梁结构噪声预测方法是当务之急;桥梁结构噪声峰值主要与桥梁结构的中高频局部振动特性和轮轨系统输入到桥梁结构的振动能量有关,桥梁的中高频局部振动特性对声辐射特性的影响机理尚未形成统一认识;目前常用的桥梁结构噪声控制措施有轨道减振措施和桥梁减振措施2类,桥梁减振措施对结构噪声的控制效果一般,轨道减振措施虽然能够有效降低桥梁结构噪声辐射,但同时可能引起轮轨噪声与道床二次结构噪声的增大,建议在保证经济性的条件下,综合运用各种控制措施,以取得最优的降噪效果。  相似文献   

6.
为研究声屏障降噪的主要影响因素及规律,基于边界元理论,结合高速列车实测声源识别结果,建立了高速铁路声屏障降噪效果预测模型,研究了包括高速列车不同位置声源、声屏障高度、声屏障截面形状和吸声边界条件对插入损失的影响,并在此基础上提出了对现役声屏障结构的改进方案.研究结果表明,列车声源高度对声屏障插入损失有重要影响,现有2.15 m高声屏障只对车体下方噪声有降噪效果;随着声屏障高度增加,插入损失逐渐增大,声屏障高于6.15 m时,插入损失达到25 dB(A)以上;对于不同截面形式的声屏障,降噪效果从优到劣依次为Y型、倾斜型、T型、外折型、直立型和内折型,其中Y型比直立型插入损失高0.7~1.5 dB(A);对于任一类型声屏障,吸声引起的具体降噪效果与声屏障形式有关,有吸声边界条件的降噪效果要优于"刚性光滑"边界条件,前者与后者相比,其插入损失可提高0.3~6.4 dB(A).   相似文献   

7.
针对目前设计手册中城市轨道交通车站站台宽度计算存在的问题,本文根据现场调研,借鉴其他国家或地区的设计规范,提出了计入楼扶梯纵向对应宽度的改进站台乘降区宽度测算方法;并采用计算机行人仿真工具,分别根据原方法和改进方法计算得到的站台宽度建立了案例车站的实体环境,进行仿真分析,得到了两种方法设计的车站的行人密度分布、行人时间损失、站台集散时间等指标.指标对比显示,对站台集散能力起决定作用的是站台楼扶梯,采用改进的计算方法,站台宽度虽然有缩减,但是整体服务水平降低不大,改进的计算方法在满足站台安全舒适性的要求的同时可缩减车站规模.  相似文献   

8.
重载铁路轨道结构受力特性仿真分析   总被引:1,自引:0,他引:1  
重载铁路朝大轴重、高运量、高密度的方向发展,对轨道结构提出了更高的需求。轨道结构在列车荷载作用下的受力特性与轨道部件尺寸、材料参数等有关。在已有研究基础上,充分结合朔黄铁路现场实测数据,采用有限元方法建立重载铁路轨道结构仿真模型,计算分析了不同轴重及不同轨道参数下的重载铁路轨道结构的受力特性(包括钢轨、轨枕、道床、路基面的弯矩、应力、变形等)。研究结果表明:列车轴重对钢轨位移与应力影响最大;采用Ⅲ型轨枕、减小轨枕间距有利于减小轨道结构受力;道床弹性模量对钢轨位移影响较大,而道床厚度对受力特性影响较小。  相似文献   

9.
当前半封闭式声屏障逐渐在高速铁路工程中得到了应用,但其在运营状态下的实际降噪效果研究还极其有限.为此,以沪昆客专杭长段半封闭式声屏障为工程背景,分别在声屏障内、外表面,以及封闭侧和敞开侧不同距离处布置测点,监测高速列车通过时的噪声,并对场点的声压级频谱、声场分布、衰减规律、隔声量和插入损失等声学特性进行讨论.结果表明:多重反射造成的混响效应使得半封闭式声屏障内表面的噪声有所增大;距封闭侧线路中心7.5 m处,高位测点比低位测点声压级大,而其他位置不同高度测点在垂向的指向性不明显.半封闭式声屏障的隔声量随频率增加而增大,在1 000 Hz处最大约26 dB;距轨道中心线7.5 m和25 m处的插入损失均值为16.5 dB(A)和15.5 dB(A).   相似文献   

10.
测试了某城市地铁1号线一期高架线路普通整体道床无声屏障和道床垫式浮置板道床全声屏障区段的桥侧环境噪声, 分析了桥侧各测点的A计权总声压级与1/3频程线性声压级, 绘制了线性声压级云图, 研究了各频段噪声能量比例。分析结果表明: 道床垫式浮置板道床全声屏障能有效降低噪声源强处与桥侧环境噪声, 降噪效果、能量分布与频段和测点位置有关; 在桥面高度相近的测点, 降噪效果随距线路中心线距离的增大而减小, 而在近地面的测点, 降噪效果随距线路中心线距离的增大而增大; 降噪效果在中高频段明显大于低频段; 在1/3频程中心频率为20.0~31.5 Hz时, 距离线路中心线55.0 m处, 道床垫式浮置板道床全声屏障区段的线性声压级较普通整体道床无声屏障区段大0.82~6.96 dB; 在普通整体道床无声屏障区段, 在高出地面1.2、9.8 m处, 噪声能量以低于200 Hz为主, 在高出地面11.3 m处, 噪声能量以250~400 Hz为主, 在高出地面12.8 m处, 噪声能量以400~1 000 Hz为主; 在高出地面11.3 m处与200 Hz以下范围内, 普通整体道床无声屏障和道床垫式浮置板道床全声屏障区段的噪声能量持平; 在道床垫式浮置板道床全声屏障区段, 低于200 Hz的桥侧噪声能量较高, 因此, 建议根据高架桥旁敏感点的具体位置采取针对性减振降噪措施, 并重点关注低频噪声失去中高频噪声的遮蔽后尤显突出的问题。  相似文献   

11.
声屏障是轨道交通重要的降噪措施之一,但在列车经过时声屏障同样会产生振动成为向外辐射噪声的声源.以内折型声屏障为研究对象,将其简化为适用于声学计算的板壳单元,通过建立高架线路结构的有限元模型,以中国高速铁路无砟轨道谱作用下的声屏障以及箱梁桥-声屏障的动力学响应作为声学边界条件,基于有限元-边界元理论分别求解单独声屏障和箱梁桥-声屏障的声辐射特性,初步探究了声屏障对高架路段结构声辐射的影响,在此基础上进一步考虑了地面反射的作用.研究结果表明:声屏障的振动形式主要表现为水平局部振动以及垂向整体振动,水平局部振动对自身结构噪声辐射的影响最大,其结构噪声集中在0~180 Hz的低频段,与桥梁结构噪声频率范围重合度较高;桥梁上安装声屏障后的振动分布发生明显地改变,使得声压在部分频段内降低,周围声场的分布也发生了明显变化而且总体上声压增加了1~2 dB;刚性地面的反射会使整个声场的声压增大,声压增加值最大可达5 dB.因此,声屏障对高架线路的整体结构声辐射能够产生很大的影响,考虑地面反射的作用后更加显著.  相似文献   

12.
为揭示胶粘道床横向阻力的工作机理,在高速铁路胶粘道床路段进行了横向阻力现场试验.分析了胶粘道床横向阻力的变化特征;利用离散元软件PFC3D(particle flow code in 3 dimensions)建立了胶粘道床三维模型,对胶粘道床内部接触力、应力进行了统计分析.研究结果表明:用胶状态下胶粘道床横向阻力值是有砟道床规范值的4.6倍,横向阻力提升显著;胶粘道床在提升横向阻力的同时,轨枕-道砟接触点压力值最大为1.2 KN,平均值为112.48 N,道砟仍处于良好的受力状态;道床全断面粘结时应保证枕下26 cm范围道砟胶喷涂的充分和均匀,以确保道床粘结效果的发挥;胶粘道床不同位置对横向阻力的分担比相对于有砟道床变化明显,胶粘道床枕侧承担63%、枕底承担24%、砟肩承担13%.  相似文献   

13.
列车定位是轨道交通众多应用的基础条件,北斗卫星导航用于列车定位能够有效提升我国轨道交通装备的自主性.针对列车北斗定位性能对运行条件的适应性需求,本文提出一种引入轨道特征的北斗列车定位方法,该方法从轨道电子地图中提取轨道特征参数,在列车状态预测的系统模型中增加轨道约束,并利用一维地图位置预测拓展北斗导航卫星的伪距测量.利用现场实测数据构建场景进行仿真.所得结果表明,本文提出的方法能够提高列车定位解算对卫星可视条件的鲁棒性,有效拓展北斗列车定位在恶劣观测条件下的可用水平,具有较高的实际应用价值.  相似文献   

14.
浮置板轨道结构具有良好的减振性能和效果,并在城市轨道交通中得到广泛使用。通过现场实测,采集预制短板浮置板和长枕埋入式轨道上各测点振动加速度数据,分析预制短板浮置板的动态特性并对比了减振特性。研究结果显示,隧道内,预制短板浮置板轨道的隔振效果在100 Hz以上区间大于20 d B;地面上,预制短板浮置板轨道在25 Hz频段以上有较好的隔振效果,最大可达25 d B,说明预制短板浮置板具有良好的减振降噪效果。  相似文献   

15.
为研究城市轨道交通高架线路敷设阻尼钢轨前后列车通过时段噪声变化规律,以敷设了阻尼钢轨的广州某高架线路为研究对象,通过对高架线路敷设阻尼钢轨前后轨道旁、距行车轨道中心线7.5和30 m处测点进行现场噪声试验,分别从时域统计、频谱和插入损失等方面分析了高架线路改造全过程,包括换轨前、换轨后、刚敷设阻尼钢轨及敷设阻尼钢轨运营半年后列车通过时段噪声变化规律。分析结果表明:换轨和敷设阻尼钢轨作为源头上的降噪措施具有一定的降噪效果,噪声源强处2种措施分别降噪1.1、2.9 dB(A),敷设阻尼钢轨能降低钢轨Pinned-Pinned振动辐射产生的噪声;换轨前高架线路列车通过噪声能量主要集中在100~3 000 Hz,分别在100~125 Hz和2 000 Hz附近出现第1、2个峰值,换轨后、刚敷设阻尼钢轨及敷设阻尼钢轨运营半年后的列车通过噪声能量主要集中在500~2 000 Hz,峰值频率出现在800 Hz附近;高架线路整个施工改造过程中60 Hz以下低频噪声变化较小,60 Hz附近的频率为轮轨系统的固有频率,高架线路改造并未使轮轨系统固有特性发生较大改变;敷设阻尼钢轨运营半年后相比刚敷设阻尼钢轨时,在距轨道中心线7.5和30 m处,1 000 Hz以上高频噪声变化较小,桥梁局部结构振动产生的辐射噪声(100~300 Hz)出现了一定的增大。  相似文献   

16.
从时刻表协调的角度,建立了不同到站间隔下地铁同台换乘站聚集人数的计算模型,并且采用Anylogic软件对乘客的实际集散行为进行仿真.仿真结果与模型计算得到的站台最大聚集人数相近,验证了模型的有效性.算例结果表明:在两方向列车发车间隔相同的情况下,同台换乘站的最大聚集人数随着两方向列车到站间隔时间的增加而减少.在算例的假设条件下,当两线路列车同时到站时,站台聚集人数最多;在此基础上,两线路列车的到站间隔时间每增加30 s,站台的最大聚集人数减少一定人数;当到站间隔时间达到150 s时,站台最大聚集人数降至最低.  相似文献   

17.
为更好地模拟城市轨道交通站台区域乘客在突发情况下的应急疏散过程,为城市轨道交通运营管理提供高效的疏散方案,建立一种基于元胞自动机(Cellular Automata, CA)的站台疏散仿真模型。通过研究乘客行为特征选择采用冯诺依曼型CA模型作为站台的疏散模型;结合对疏散空间特点的分析确定基于动态规划的疏散路径规划方法,并给出最优路径的计算方法;根据站台乘客的初始分布提出基于欧式距离和综合考虑路径长度与排队时间的两种出口选择方案。最后针对仿真案例,运用上述模型和出口选择方案进行了仿真分析。结果表明:模型通过对每个乘客元胞进行疏散路径规划,实现了对乘客排队行为的模拟,符合运营管理介入情况下乘客疏散的实际情形;基于欧氏距离的出口选择方案可用于站台乘客初始分布大致均匀情况下的疏散仿真;综合考虑路径长度与排队时间的出口选择方案由于排队权重参数的引入,可较好地模拟站台乘客初始分布不均时乘客选择路径远但排队人数少的出口这一行为。模型的演化规则可成为运营管理人员组织疏散的依据。  相似文献   

18.
轮轨表面粗糙度激励轮轨系统振动并辐射噪声,决定着轨道交通主要噪声来源的转向架区域噪声.以时速为160 km/h运行的快速轨道交通列车为研究对象,基于有限元-边界元法、模态叠加法建立轮轨噪声预测分析模型,应用该模型调查了车轮表面粗糙度对于轮轨噪声的影响;进而基于声线法建立以时速160 km/h运行的快速轨道交通列车转向架区域噪声仿真预测分析模型,以文中预测分析得到的轮轨噪声和现场实测得到的转向架区域气动噪声、辅助设备噪声为声源,研究转向架区域噪声特性随车轮表面粗糙度的变化规律.结果表明:转向架区域外侧场点噪声随车轮表面粗糙度的增大而增大.车轮表面粗糙度主要影响315~5 000 Hz频率的转向架区域外侧场点噪声,与车轮表面粗糙度较好的工况,车轮表面粗糙度较差时,转向架区域外侧场点噪声的总声压级均增大5.5 d B(A)左右.  相似文献   

19.
为研究软土地区明挖基坑对附近多种建筑物和地层的影响,针对既有天桥下明挖基坑的实际工程,利用ANSYS软件建立三维模型,考虑地层的非线性变形特性,研究了基坑开挖深度对周边地层位移、车站上部天桥结构应力、变形以及车站轨道承台附近地表位移的影响规律,并探讨了“天桥效应”造成的局部影响。结果表明:随着基坑开挖深度增加,车站主体结构最大总位移、轨道桩基承台边缘沿轨道轴线方向的沉降均有所增加,而主体结构最大等效应力改变很小;天桥处轨道桩基的水平位移比其余部位位移小50%左右,天桥对轨道桩基有一定的保护作用,但其纵向不均匀变形会对轨道结构造成不利影响,因此建议施工时要合理控制“天桥效应”,通过数值模拟对施工进行动态仿真分析可为实际工程提供理论依据和参考。  相似文献   

20.
采用大涡模拟方法和FW-H声学模型对车用交流发电机气动噪声进行数值模拟, 采用矢量合成方法优化交流发电机前扇叶分布角度, 以低噪声、高流量与优化频谱结构降低单频旋转噪声为目标, 分析了交流发电机气动噪声特性。分析结果表明: 交流发电机噪声声压级、主要影响阶次与幅值的数值模拟与试验结果有很好的一致性; 交流发电机气动噪声源为前后扇叶, 总噪声的主要影响阶次为第6、8、10、12、18阶次, 主要能量集中在1 120~5 600Hz范围内; 总噪声最大预测误差为6.97dB, 第12、18阶次旋转噪声预测误差分别为2.30、3.30dB; 前扇叶分布角度优化后总噪声最大降幅为3.10dB, 平均降幅为2.58dB, 第12、18阶次噪声平均降幅为5.80dB, 降噪效果明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号