首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

2.
3.
The species composition, abundance, and biomass of micro- (>15 μm) and nano- (<15 μm) phytoplankton were studied along the southern Black Sea during June–July 1996 and March–April and September 1998. A total of 150 species were identified, 50% of them being dinoflagellates. The average total phytoplankton abundance changed from 77×103 cells l−1 in spring to 110×103 cells l−1 in autumn and biomass from 250 μg l−1 in summer to 1370 μg l−1 in spring. Based on the extensive sampling grid from June–July 1996, phytoplankton seemed to have a rather homogeneous biomass distribution in the southern Black Sea. In all periods, the coccolithophorid Emiliania huxleyi was the most abundant species, its contribution to the total abundance ranging from 73% in autumn to 43% in spring. However, in terms of biomass, diatoms made up the bulk of phytoplankton in spring (97%, majority being Proboscia alata) and autumn (73%, majority being Pseudosolenia calcar-avis), and dinoflagellates in summer (74%, Gymnodinium sp.). There was a remarkable similarity in the dominant species between the western and eastern regions of the southern Black Sea, indicating transport of phytoplankton within the basin.  相似文献   

4.
This paper presents results obtained with MIRO&CO-3D, a biogeochemical model dedicated to the study of eutrophication and applied to the Channel and Southern Bight of the North Sea (48.5°N–52.5°N). The model results from coupling of the COHERENS-3D hydrodynamic model and the biogeochemical model MIRO, which was previously calibrated in a multi-box implementation. MIRO&CO-3D is run to simulate the annual cycle of inorganic and organic carbon and nutrients (nitrogen, phosphorus and silica), phytoplankton (diatoms, nanoflagellates and Phaeocystis), bacteria and zooplankton (microzooplankton and copepods) with realistic forcing (meteorological conditions and river loads) for the period 1991–2003. Model validation is first shown by comparing time series of model concentrations of nutrients, chlorophyll a, diatom and Phaeocystis with in situ data from station 330 (51°26.00′N, 2°48.50′E) located in the centre of the Belgian coastal zone. This comparison shows the model's ability to represent the seasonal dynamics of nutrients and phytoplankton in Belgian waters. However the model fails to simulate correctly the dissolved silica cycle, especially during the beginning of spring, due to the late onset (in the model) of the early spring diatom bloom. As a general trend the chlorophyll a spring maximum is underestimated in simulations. A comparison between the seasonal average of surface winter nutrients and spring chlorophyll a concentrations simulated with in situ data for different stations is used to assess the accuracy of the simulated spatial distribution. At a seasonal scale, the spatial distribution of surface winter nutrients is in general well reproduced by the model with nevertheless a small overestimation for a few stations close to the Rhine/Meuse mouth and a tendency to underestimation in the coastal zone from Belgium to France. PO4 was simulated best; silica was simulated with less success. Spring chlorophyll a concentration is in general underestimated by the model. The accuracy of the simulated phytoplankton spatial distribution is further evaluated by comparing simulated surface chlorophyll a with that derived from the satellite sensor MERIS for the year 2003. Reasonable agreement is found between simulated and satellite-derived regions of high chlorophyll a with nevertheless discrepancies close to the boundaries.  相似文献   

5.
The onset of spring bloom in temperate areas is a transition period where the low productive, winter phytoplankton community is transformed into a high productive spring community. Downwelling irradiance, mixing depth and the ability of the phytoplankton community to utilize the light, are key parameters determining the timing of the onset of the spring bloom. Knowing these parameters would thus provide tools for modeling the spring bloom and enhance our knowledge of ecophysiological processes during this period.Our main objective with this study was to provide data for the growth characteristics of some key species forming the spring bloom in the Gulf of Finland, and to apply those results in a simple dynamic model for the onset of the spring bloom, in order to test if the timing of the spring bloom predicted by the models corresponds to field observations. We investigated the photosynthetic characteristics of three diatoms and two dinoflagellates (Chaetoceros wighamii, Melosira arctica, Thalassiosira baltica, Scrippsiella hangoei and Woloszynskia halophila), at low temperatures (4–5 °C). All of these species are common during spring bloom in the Baltic Sea.Cultures of these species were acclimated to different irradiance regimes prior to measurements of photosynthesis, respiration, pigment concentration and light absorption. We did not find a positive relationship between respiration and growth rate, and we hypothesize that this relationship, which is well established at higher temperatures, is negligible or absent at low temperatures (< 10 °C). Photosynthetic maximum (Pm), and maximum light utilization coefficient (α) was lowest and respiration (R) highest in the dinoflagellates.We made a model of the onset of the spring bloom in the western part of Gulf of Finland, using the obtained data together with monitoring data of mixing depth and water transparency from this area. Model results were compared to field observations of chlorophyll-a (Chl-a) concentration. There was a good agreement between the model predictions and the observed onset of the spring bloom for the diatoms. S. hangoei, however, was not able to reach positive production in the model, and W. halophila had the similar growth characteristics as S. hangoei. Consequently, these species must have other competition strategies enabling them to exist and grow during spring bloom.  相似文献   

6.
During the late austral summer of 1994, Antarctic waters were characterized by low phytoplankton biomass. Along the 62°E meridian transect, between 49°S and 67°S, chlorophyll (Chl.) a concentration in the upper 150 m was on average 0.2 mg m−3. However, in the Seasonal Ice Zone (SIZ) chlorophyll a concentrations were higher, with a characteristic deep chlorophyll maximum. The highest value (0.6 mg Chl. a m−3) was measured at the Antarctic Divergence, 64°S, corresponding to the depth of the temperature minimum (100 m). This deep biomass maximum decreased from South to North, disappeared in the Permanently Open Ocean Zone (POOZ) and reappeared with less vigour in the vicinity of the Polar Front Zone (PFZ). In the SIZ, the upper mixed layer was shallow, biomass was higher and the >10 μm fraction was predominant. In this zone the >10 μm, 2–10 μm and <2 μm size fractions represented on the average 46%, 25.1% and 28.9% of the total integrated Chl. a stock in the upper 100 m, respectively. The phytoplankton assemblage was diverse, mainly composed of large diatoms and dinoflagellate cells which contributed 42.7% and 33.1% of the autotrophic carbon biomass, respectively. Moving northwards, in parallel with the decrease in biomass, the biomass of autotrophic pico- and nanoflagellates (mainly Cryptophytes) increased steadily. In the POOZ, the picoplanktonic size fraction contributed 47.4% of the total integrated Chl. a stock. A phytoplankton community structure with low biomass and picoplankton-dominated assemblage in the POOZ contrasted with the relatively rich, diverse and diatom-dominated assemblage in the SIZ. These differences reflect the spatial and temporal variations prevailing in the Southern Ocean pelagic ecosystem.  相似文献   

7.
The influence of intrusions of eastern North Atlantic central water (ENACW) in the north and northwestern Iberian shelf on phytoplankton composition and abundance and on particle-size distributions of seston was analyzed using data collected on three extensive cruises during spring 1991 and 1992. Water with temperature and salinity values between 12.20 and 13.86 °C and between 35.66 and 35.98 psu, respectively, characteristics of the subtropical type of ENACW (ENACWt), was detected in the upper 100 m of the water-column in all cruises, but particularly in the western coast in 1992. The highest salinity values of this water were found near the surface (0–100-m depth) and in early spring 1992, while minimum salinity values, and also minimum geographical extension, were found in late spring in both years. Phytoplankton blooms concentrated in frontal areas between different water types, with maximum intensity and extension in early spring.Using temperature and salinity characteristics, samples were classified in four groups corresponding to the major water types found in the region: Bay of Biscay central water (BBCW), two segments of ENACW of different salinity and surface water influenced by continental runoff. This classification was significantly confirmed by three independent discriminant analyses using hydrographic and chemical (dissolved nutrients and chlorophyll) variables, phytoplankton species abundance variables and particle-size concentration of seston variables. Phytoplankton blooms related to the presence of saline waters were characterized by the dominance of either chain-forming diatoms or a mixture of diatoms and phytoflagellates and high concentrations of seston. The diatom species dominating in saline waters were typical of upwelling-induced blooms occurring generally during summer. Blooms occurring in waters influenced by runoff also contained diatoms but in lower numbers than those of saline waters. Nutrients were not exhausted in the region, suggesting that phytoplankton populations were still in active growth. These results are interpreted taking into account the known variability in water-mass formation and in the poleward current driving ENACWt along the shelf, and indicate that saline intrusions are a major feature affecting the distribution and composition of plankton in the spring in the southern Bay of Biscay, thus enlarging to a wider spatial scale their reported influence on the pelagic ecosystem.  相似文献   

8.
Atmospheric molar fraction of CO2 (xCO2atm) measurements obtained on board of ships of opportunity are used to parameterize the seasonal cycle of atmospheric xCO2 (xCO2atm) in three regions of the eastern North Atlantic (Galician and French offshore and Bay of Biscay). Three selection criteria are established to eliminate spurious values and identify xCO2atm data representative of atmospheric background values. The filtered data set is fitted to seasonal curve, consisting of an annual trend plus a seasonal cycle. Although the fitted curves are consistent with the seasonal evolution of xCO2atm data series from land meteorological stations, only ship-board measurements can report the presence of winter xCO2atm minimum on Bay of Biscay. Weekly air–sea CO2 flux differences (mmol C·m− 2 day− 1) produced by the several options of xCO2atm usually used (ship-board measurements, data from land meteorological stations and annually averaged values) were calculated in Bay of Biscay throughout 2003. Flux error using fitted seasonal curve relative to on board measurements was minimal, whereas land stations and annual means yielded random (− 0.2 ± 0.3 mmol C·m− 2·day− 1) and systematic (− 0.1 ± 0.4 mmol C·m− 2 day− 1), respectively. The effect of different available sources of sea level pressure, wind speed and transfer velocity were also evaluated. Wind speed and transfer velocity parameters are found as the most critical choice in the estimate of CO2 fluxes reaching a flux uncertainty of 7 mmol C·m− 2·day− 1 during springtime. The atmospheric pressure shows a notable relative effect during summertime although its influence is quantitatively slight on annual scale (0.3 ± 0.2 mmol C·m− 2·day− 1). All results confirms the role of the Bay of Biscay as CO2 sink for the 2003 with an annual mean CO2 flux around − 5 ± 5 mmol C m− 2 day− 1.  相似文献   

9.
Vertical flux of particulate material was recorded with moored sediment traps during 1988/1989 in the Greenland Sea at 72°N, 10°W. This region exhibits pronounced seasonal variability in ice cover. Annual fluxes at 500 m water depth were 22. 79, 8.55, 2.39, 3.81 and 0.51 g m−2 for total flux (dry weight), carbonate particulate biogenic silicate, particulate organic carbon and nitrogen, respectively. Fluxes increased in April, maximum rates of all compounds occurred in May–June, and consistently high total flux rates of around 100 mg m−2d−1 prevailed the summer. The increasing flux of biogenic particles measured in April is indicative of an early onset of algal growth in spring. Small pennate diatoms dominated in the trap collections during April, and were still numerous during the high flux period when Thalassiosira species were the most abundant diatoms. During May–June, up to 22% of the Thalassiosira cells collected were viable-looking cells. The faecal pellet flux increased after the May–June event. Therefore we conclude that the diatoms settled as phytodetritus, most likely in rapidly sinking aggregates. From seasonal nutrient profiles it is concluded that diatoms contribute 25% to new production during spring and 50% on an annual basis. More than 50% of newly produced silicate particles are dissolved above the 500 m horizon. High new production during spring does not lead to a pronounced sedimentation pulse of organic matter during spring but elevated vertical export is observed during the entire growth period.  相似文献   

10.
Seasonal changes in the abundance and biomass of cyanobacteria (Synechococcus and Prochlorococcus) and picoeukaryotes were studied by flow cytometry in the upper layers of the central Cantabrian Sea continental shelf, from April 2002 to April 2006. The study area displayed the typical hydrographic conditions of temperate coastal zones. A marked seasonality of the relative contribution of prokaryotes and eukaryotes was found. While cyanobacteria were generally more abundant for most of the year (up to 2.4 105 cells mL− 1), picoeukaryotes dominated the community (up to 104 cells mL− 1) from February to May. The disappearance of Prochlorococcus from spring through summer is likely related to shifts in the prevailing current regime. The maximum total abundance of picophytoplankton was consistently found in late summer–early autumn. Mean photic-layer picoplanktonic chlorophyll a ranged from 0.06 to 0.53 µg L− 1 with a relatively high mean contribution to total values (33 ± 2% SE), showing maxima around autumn and minima in spring. Biomass (range 0.58–40.16 mg C m− 3) was generally dominated by picoeukaryotes (mean ± SE, 4.28 ± 0.27 mg C m− 3) with an average contribution of cyanobacteria of 30 ± 2%. Different seasonality of pigment and biomass values resulted in a clear temporal pattern of picophytoplanktonic carbon to chlorophyll a ratio, which ranged from 10 (winter) to 140 (summer). This study highlights the important contribution of picoplanktonic chlorophyll a and carbon biomass in this coastal ecosystem.  相似文献   

11.
The annual cycle of nanoflagellates (NF) including autotrophic (ANF), heterotrophic (HNF) and mixotropic (MNF) flagellates carried out in a temperate sea (Central Cantabrian Sea, southern Bay of Biscay) is presented. Three stations with characteristics ranging from coastal to oceanic conditions were analysed in order to compare NF response to this gradient. Samples were monthly collected at each station at three different depths between February 2002 and December 2002. CTD profiles were also taken at each station. NF were grouped according to their trophic status into ANF, HNF and MNF. Abundance and biomass were determined for each group. The annual cycle showed a general pattern consisting in a maximum in July with secondary maxima in March and October and minimum values in May. ANF were the most important fraction, making a major contribution (nearly 75%) to total NF biomass in all stations. HNF represented over 20% along the cycle, except for a peak in spring found in every station. MNF reached less than 5%, showing low seasonability. Small flagellates (2–5 µm) dominated throughout the cycle. Microplankton community was also analysed in terms of abundance and biomass. A significant positive correlation (r2 = 0.49) was obtained between 2–5 µm NF and 10–20 µm HNF–MNF biomasses, suggesting a possible trophic relationship between these groups which should be cautiously taken. No significant relationships were found between microplankton and NF or between nutrients and ANF, indicating that the regulation of NF numbers is complex and probably implicates other groups. In addition to this, the unexpected 2002 Chl a concentration pattern and the misplacing of upwelling events render necessary to perform additional studies to fully understand the precise behaviour of NF in the Cantabrian Sea. To the best of our knowledge, this is the first study of a NF cycle in a temperate sea that considers all functional groups.  相似文献   

12.
Phytoplankton community structure was investigated in a 1-year study period from January to December 2006 in the Tunis North Lagoon (South Mediterranean). Twice a month, sampling was carried out from the whole water column. Phytoplankton species composition showed seasonal dynamics following the general environmental variable trends in the study area, with variation in species abundance levels within each season characterised by the presence of different phytoplankton communities. Analysis of environmental variables indicated that phytoplankton-dominant communities were associated with various water physicochemical characteristics, especially water temperature and salinity. Accordingly, significant correlation was recorded between water temperature and dinoflagellates (r = 0.35; p < 0.05) in summer and diatoms (r = 0.69; p < 0.05) in autumn, whereas euglenophytes, cyanophytes and chlorophytes were slightly correlated with temperature in autumn. Salinity was positively correlated with dichtyophytes (r = 0.41; p < 0.05) in winter and with diatoms (r = 0.65; p < 0.05) and euglenophytes (r = 0.57; p < 0.05) in autumn. On the other hand, relationships between high nitrogen nutrient concentration and phytoplankton concentration were recorded for diatoms (r = 0.43; p < 0.05 with NO2; r = 0.49; p < 0.05 with NO3) in winter. Silicate concentration supported proliferation of diatoms (r = 0.58; p < 0.05) in autumn in our study period. In contrast, increase of dinoflagellate concentration was associated with the decrease of these parameters in spring and summer.  相似文献   

13.
We measured the abundance and biomass of phototrophic and heterotrophic microbes in the upper mixed layer of the water column in ice-covered Franklin Bay, Beaufort Sea, Canada, from December 2003 to May 2004, and evaluated the influence of light and nutrients on these communities by way of a shipboard enrichment experiment. Bacterial cell concentrations showed no consistent trends throughout the sampling period, averaging (± SD) 2.4 (0.9) × 108 cells L− 1; integrated bacterial biomass for the upper mixed layer ranged from 1.33 mg C m− 3 to 3.60 mg C m− 3. Small cells numerically dominated the heterotrophic protist community in both winter and spring, but in terms of biomass, protists with a diameter > 10 µm generally dominated the standing stocks. Heterotrophic protist biomass integrated over the upper mixed layer ranged from 1.23 mg C m− 3 to 6.56 mg C m− 3. Phytoplankton biomass was low and variable, but persisted during the winter period. The standing stock of pigment-containing protists ranged from a minimum value of 0.38 mg C m− 3 in winter to a maximal value of 6.09 mg C m− 3 in spring and the most abundant taxa were Micromonas-like cells. These picoprasinophytes began to increase under the ice in February and their population size was positively correlated with surface irradiance. Despite the continuing presence of sea ice, phytoplankton biomass rose by more than an order of magnitude in the upper mixed layer by May. The shipboard experiment in April showed that this phototrophic increase in the community was not responsive to pulsed nutrient enrichment, with all treatments showing a strong growth response to improved irradiance conditions. Molecular (DGGE) and microscopic analyses indicated that most components of the eukaryotic community responded positively to the light treatment. These results show the persistence of a phototrophic inoculum throughout winter darkness, and the strong seasonal response by arctic microbial food webs to sub-ice irradiance in early spring.  相似文献   

14.
The changes in the environmental features of the Yellow Sea during the last 25 years of the 20th century were studied using a set of seasonally monitored data along a transect (at 36°N) maintained by the State Oceanic Administration of China. The data included the ocean temperature (T), salinity (S) and biogenic elements, such as dissolved oxygen (DO), phosphorus (PO4-P), silicon (SiO3-Si) and dissolved inorganic nitrogen (DIN).The seasonal (summer and winter) values and the annual mean of these elements showed significant changes during the monitored period. Time series of T, S, DIN and N:P ratios exhibited positive trends, while those of DO, P and Si exhibited negative trends. During this period, the annual mean of T and DIN in the Yellow Sea increased by 1.7 °C and 2.95 μmol L−1, respectively, while those of DO, P and Si decreased by 59.1, 0.1 and 3.93 μmol L−1, respectively. In the 1980s, particularly in between 1985 and 1989, concentrations of P and Si dropped to near the ecological threshold for growth of diatoms. The N:P ratio increased from 4 in 1984 to over 16 in 2000. The climate trend coefficients, Rxt, for these time series are all above 0.43 with significance levels of 95%, except for salinity. The increases in T were consistent with the recent climate warming in northern China and the adjacent seas, i.e. the Bohai Sea and the East China Sea. The reduction of DO was probably attributable to the increase in T and decrease in primary production in these regions. The positive trend of DIN was mainly attributable to precipitation and partly to Changjiang River discharge. The negative concentration trends of P and Si were due to the decreases in their concentrations in seawater that flowed to the Yellow Sea from the Bohai Sea. As a result, N:P ratios greatly increased in the seawater of the Yellow Sea.Moreover, some important responses of the Yellow Sea ecosystems to the changes in physical variables and chemical biogenic elements were obviously displayed. These responses include strengthening nutrient limitation, decreasing chlorophyll a, primary production and phytoplankton abundance, succession of dominant phytoplankton species from diatoms to non-diatoms, changes in fish community structure and species diversity.  相似文献   

15.
Protist abundance and taxonomic composition were determined in four development stages of newly formed sea ice (new ice, nilas, young ice and thin first-year ice) and in the underlying surface waters of the Canadian Beaufort Sea from 30 September to 19 November 2003. Pico- and nanoalgae were counted by flow cytometry whereas photosynthetic and heterotrophic protists ≥ 4 µm were identified and counted by inverted microscopy. Protists were always present in sea ice and surface water samples throughout the study period. The most abundant protists in sea ice and surface waters were cells < 4 µm. They were less abundant in sea ice (418–3051 × 103 cells L− 1) than in surface waters (1393–5373 × 103 cells L− 1). In contrast, larger protists (≥ 4 µm) were more abundant in sea ice (59–821 × 103 cells L− 1) than in surface waters (22–256 × 103 cells L− 1). These results suggest a selective incorporation of larger cells into sea ice. The ≥ 4 µm protist assemblage was composed of a total number of 73 taxa, including 12 centric diatom species, 7 pennate diatoms, 11 dinoflagellates and 16 flagellates. The taxonomic composition in the early stage of ice formation (i.e., new ice) was very similar to that observed in surface waters and was composed of a mixed population of nanoflagellates (Prasinophyceae and Prymnesiophyceae), diatoms (mainly Chaetoceros species) and dinoflagellates. In older stages of sea ice (i.e., young ice and thin first-year ice), the taxonomic composition became markedly different from that of the surface waters. These older ice samples contained relatively fewer Prasinophyceae and more unidentified nanoflagellates than the younger ice. Diatom resting spores and dinoflagellate cysts were generally more abundant in sea ice than in surface waters. However, further studies are needed to determine the importance of this winter survival strategy in Arctic sea ice. This study clearly shows the selective incorporation of large cells (≥ 4 µm) in newly formed sea ice and the change in the taxonomic composition of protists between sea ice and surface waters as the fall season progresses.  相似文献   

16.
Air–sea fluxes in the Caribbean Sea are presented based on measurements of partial pressure of CO2 in surface seawater, pCO2sw, from an automated system onboard the cruise ship Explorer of the Seas for 2002 through 2004. The pCO2sw values are used to develop algorithms of pCO2sw based on sea surface temperature (SST) and position. The algorithms are applied to assimilated SST data and remotely sensed winds on a 1° by 1° grid to estimate the fluxes on weekly timescales in the region. The positive relationship between pCO2sw and SST is lower than the isochemical trend suggesting counteracting effects from biological processes. The relationship varies systematically with location with a stronger dependence further south. Furthermore, the southern area shows significantly lower pCO2sw in the fall compared to the spring at the same SST, which is attributed to differences in salinity. The annual algorithms for the entire region show a slight trend between 2002 and 2004 suggesting an increase of pCO2sw over time. This is in accord with the increasing pCO2sw due the invasion of anthropogenic CO2. The annual fluxes of CO2 yield a net invasion of CO2 to the ocean that ranges from − 0.04 to − 1.2 mol m− 2 year− 1 over the 3 years. There is a seasonal reversal in the direction of the flux with CO2 entering into the ocean during the winter and an evasion during the summer. Year-to-year differences in flux are primarily caused by temperature anomalies in the late winter and spring period resulting in changes in invasion during these seasons. An analysis of pCO2sw before and after hurricane Frances (September 4–6, 2004), and wind records during the storm suggest a large local enhancement of the flux but minimal influence on annual fluxes in the region.  相似文献   

17.
The phytoplankton of the Ross Sea have been intensively studied, in contrast to that of the Amundsen Sea. This study focused on understanding the environmental variables that influence the spatial patterns of assemblages during late summer, 2007, and late spring-early summer, 2008 in the Amundsen and Ross Seas. Blooms of the prymnesiophyte Phaeocystis antarctica, and the silicoflagellate Dictyocha speculum occurred in the southwestern to eastern parts of the Ross Sea, respectively, whereas diatoms dominated in southeastern Ross and the Amundsen Sea. Shallow mixed layers supported the growth of diatoms, but were not the only factor required for diatom bloom development. Modified Circumpolar Deep Water intruded into the subsurface waters (< 200 m) in the southwestern Ross Sea during February 2007, and possibly favored the formation of P. antarctica blooms. Photosynthetic quantum yield data suggest that blooms from the southwestern Ross Sea were approaching stress during January 2008, likely due to iron limitation, in contrast to blooms close to the ice edge in the Amundsen Sea, where iron may be more available to the phytoplankton. A detailed comparison between the Amundsen and Ross Seas may allow a greater understanding of the environmental-induced impacts on phytoplankton distribution and regional biogeochemical cycles.  相似文献   

18.
The results of a study on the spatial and temporal dynamics of size-fractionated biomass and production of phytoplankton in the Ross Sea during the austral spring and summer are reported. The spring cruise took place in the offshore Ross Sea from 14 November to 14 December 1994. Sampling was carried out on a transect of 27 stations distributed from 76.5 to 72.0°S along 175°E, and covered the three main Antarctic environments of the polynya open waters, the marginal ice zone and the pack ice area. Three subsystems were identified. The subsystem of the polynya was characterised by the predominance of the micro- and nano-planktonic fractions, chlorophyll (Chl a) concentrations from 69.6 to 164.7 mg m−2 and production rates from 0.68 to 1.14 g C m−2 day−1. The second subsystem, the marginal ice zone, showed a relative increase of the micro-planktonic fraction, high biomass levels (from 99.64 to 220 mg Chl m−2) and production rates from 0.99 to 2.7 g C m−2 day−1. The subsystem of the pack ice area had a phytoplankton community dominated by the pico-planktonic fraction and showed low biomasses (from 19.4 to 37.7 mg Chl m−2) and production rates (0.28 to 0.60 g C m−2 day−1). Selective grazing by krill is considered an important factor in determining the size structure of the phytoplankton communities. The summer study consisted of a time series carried out in inshore waters of Terra Nova Bay from 12 January to 8 February 1990. In a well stabilised water column and with high levels of PAR always available, the primary production rates of a community dominated by micro-plankton varied from 0.52 to 1.2 g C m−2 day−1 (average 0.84). A high P/B ratio, up to 3, and a remarkably elevated mean phaeopigment (Phaeo)/Chl a ratio of 2.4 indicated an active removal of biomass by grazing, confirmed by the presence of faecal pellets in quantities reaching 6000 m−3 in the upper 50 m. The peculiarities of the inshore versus offshore environments in terms of community size structure, production processes and their implications as regards the food web are discussed.  相似文献   

19.
A Pacific basin-wide physical–biogeochemical model has been used to investigate the seasonal and interannual variation of physical and biological fields with analyses focusing on the Sea of Japan/East Sea (JES). The physical model is based on the Regional Ocean Model System (ROMS), and the biogeochemical model is based on the Carbon, Si(OH)4, Nitrogen Ecosystem (CoSiNE) model. The coupled ROMS–CoSiNE model is forced with the daily air–sea fluxes derived from the National Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) reanalysis for the period of 1994 to 2001, and the model results are used to evaluate climate impact on nutrient transport in Mixed Layer Depth (MLD) and phytoplankton spring bloom dynamics in the JES.The model reproduces several key features of sea surface temperature (SST) and surface currents, which are consistent with the previous modeling and observational results in the JES. The calculated volume transports through the three major straits show that the Korea Strait (KS) dominates the inflow to the JES with 2.46 Sv annually, and the Tsugaru Strait (TS) and the Soya Strait (SS) are major outflows with 1.85 Sv and 0.64 Sv, respectively. Domain-averaged phytoplankton biomass in the JES reaches its spring peak 1.8 mmol N m− 3 in May and shows a relatively weak autumn increase in November. Strong summer stratification and intense consumption of nitrate by phytoplankton during the spring result in very low nitrate concentration at the upper layer, which limits phytoplankton growth in the JES during the summer. On the other hand, the higher grazer abundance likely contributes to the strong suppression of phytoplankton biomass after the spring bloom in the JES. The model results show strong interannual variability of SST, nutrients, and phytoplankton biomass with sudden changes in 1998, which correspond to large-scale changes of the Pacific Decadal Oscillation (PDO). Regional comparisons of interannual variations in springtime were made for the southern and northern JES. Variations of nutrients and phytoplankton biomass related to the PDO warm/cold phase changes were detected in both the southern and northern JES, and there were regional differences with respect to the mechanisms and timing. During the warm PDO, the nutrients integrated in the MLD increased in the south and decreased in the north in winter. Conversely, during the cold PDO, the nutrients integrated in the MLD decreased in the south and increased in the north. Wind divergence/convergence likely drives the differences in the southern and northern regions when northerly and northwesterly monsoon dominates in winter in the JES. Subjected to the nutrient change, the growth of phytoplankton biomass appears to be limited neither by nutrient nor by light consistently both in the southern and northern regions. Namely, the JES is at the transition zone of the lower trophic-level ecosystem between light-limited and nutrient-limited zones.  相似文献   

20.
The distribution of picophytoplankton (0.2–2 µm) and nanophytoplankton (2–20 µm) in the Beaufort Sea–Mackenzie Shelf and Amundsen Gulf regions during autumn, 2002 is examined relative to their ambient water mass properties (salinity, temperature and nutrients: nitrate + nitrite, phosphate, and silicate) and to the ratio of variable to maximum fluorescence, Fv/Fm. Total phytoplankton and cell abundances (< 20 µm) were mainly correlated with salinity. Significant differences in picophytoplankton cell numbers were found among waters near the mouth of the Mackenzie River, ice melt waters and the underlying halocline water masses of Pacific origin. Picophytoplankton was the most abundant phytoplankton fraction during the autumnal season, probably reflecting low nitrate concentrations (surface waters average ~ 0.65 µM). The ratio Fv/Fm averaged 0.44, indicating that cells were still physiologically active, even though their concentrations were low (max Chl a = 0.9 mg m− 3). No significant differences in Fv/Fm were evident in the different water masses, indicating that rate limiting conditions for photosynthesis and growth were uniform across the whole system, which was in a pre-winter stage, and was probably already experiencing light limitation as a result of shortening day lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号