首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract

In this paper a route-based dynamic deterministic user equilibrium assignment model is presented. Some features of the linear travel time model are first investigated and then a divided linear travel time model is proposed for the estimation of link travel time: it addresses the limitations of the linear travel time model. For the application of the proposed model to general transportation networks, this paper provides thorough investigations on the computational issues in dynamic traffic assignment with many-to-many OD pairs and presents an efficient solution procedure. The numerical calculations demonstrate that the proposed model and solution algorithm produce satisfactory solutions for a network of substantial size with many-to-many OD pairs. Comparisons of assignment results are also made to show the impacts of incorporation of different link travel time models on the assignment results.  相似文献   

2.
The vehicle navigation problem studied in Bell (2009) is revisited and a time-dependent reverse Hyperstar algorithm is presented. This minimises the expected time of arrival at the destination, and all intermediate nodes, where expectation is based on a pessimistic (or risk-averse) view of unknown link delays. This may also be regarded as a hyperpath version of the Chabini and Lan (2002) algorithm, which itself is a time-dependent A* algorithm. Links are assigned undelayed travel times and maximum delays, both of which are potentially functions of the time of arrival at the respective link. Probabilities for link use are sought that minimise the driver’s maximum exposure to delay on the approach to each node, leading to the determination of a pessimistic expected time of arrival at the destination and all intermediate nodes. Since the context considered is vehicle navigation, the probability of link use measures link attractiveness, so a link with a zero probability of use is unattractive while a link with a probability of use equal to one will have no attractive alternatives. A solution algorithm is presented and proven to solve the problem provided the node potentials are feasible and a FIFO condition applies to undelayed link travel times. The paper concludes with a numerical example.  相似文献   

3.
This paper studies link travel time estimation using entry/exit time stamps of trips on a steady-state transportation network. We propose two inference methods based on the likelihood principle, assuming each link associates with a random travel time. The first method considers independent and Gaussian distributed link travel times, using the additive property that trip time has a closed-form distribution as the summation of link travel times. We particularly analyze the mean estimates when the variances of trip time estimates are known with a high degree of precision and examine the uniqueness of solutions. Two cases are discussed in detail: one with known paths of all trips and the other with unknown paths of some trips. We apply the Gaussian mixture model and the Expectation–Maximization (EM) algorithm to deal with the latter. The second method splits trip time proportionally among links traversed to deal with more general link travel time distributions such as log-normal. This approach builds upon an expected log-likelihood function which naturally leads to an iterative procedure analogous to the EM algorithm for solutions. Simulation tests on a simple nine-link network and on the Sioux Falls network respectively indicate that the two methods both perform well. The second method (i.e., trip splitting approximation) generally runs faster but with larger errors of estimated standard deviations of link travel times.  相似文献   

4.
This paper addresses the discrete network design problem (DNDP) with multiple capacity levels, or multi-capacity DNDP for short, which determines the optimal number of lanes to add to each candidate link in a road network. We formulate the problem as a bi-level programming model, where the upper level aims to minimize the total travel time via adding new lanes to candidate links and the lower level is a traditional Wardrop user equilibrium (UE) problem. We propose two global optimization methods by taking advantage of the relationship between UE and system optimal (SO) traffic assignment principles. The first method, termed as SO-relaxation, exploits the property that an optimal network design solution under SO principle can be a good approximate solution under UE principle, and successively sorts the solutions in the order of increasing total travel time under SO principle. Optimality is guaranteed when the lower bound of the total travel time of the unexplored solutions under UE principle is not less than the total travel time of a known solution under UE principle. The second method, termed as UE-reduction, adds the objective function of the Beckmann-McGuire-Winsten transformation of UE traffic assignment to the constraints of the SO-relaxation formulation of the multi-capacity DNDP. This constraint is convex and strengthens the SO-relaxation formulation. We also develop a dynamic outer-approximation scheme to make use of the state-of-the-art mixed-integer linear programming solvers to solve the SO-relaxation formulation. Numerical experiments based on a two-link network and the Sioux-Falls network are conducted.  相似文献   

5.
Through relaxing the behavior assumption adopted in Smith’s model (Smith, 1984), we propose a discrete dynamical system to formulate the day-to-day evolution process of traffic flows from a non-equilibrium state to an equilibrium state. Depending on certain preconditions, the equilibrium state can be equivalent to a Wardrop user equilibrium (UE), Logit-based stochastic user equilibrium (SUE), or boundedly rational user equilibrium (BRUE). These equivalence properties indicate that, to make day-to-day flows evolve to equilibrium flows, it is not necessary for travelers to choose their routes based on actual travel costs of the previous day. Day-to-day flows can still evolve to equilibrium flows provided that travelers choose their routes based on estimated travel costs which satisfy these preconditions. We also show that, under a more general assumption than the monotonicity of route cost function, the trajectory of the dynamical system converges to a set of equilibrium flows by reasonably setting these parameters in the dynamical system. Finally, numerical examples are presented to demonstrate the application and properties of the dynamical system. The study is helpful for understanding various processes of forming traffic jam and designing an algorithm for calculating equilibrium flows.  相似文献   

6.
This paper proposes simple and direct formulation and algorithms for the probit-based stochastic user equilibrium traffic assignment problem. It is only necessary to account for random variables independent of link flows by performing a simple transformation of the perceived link travel time with a normal distribution. At every iteration of a Monte-Carlo simulation procedure, the values of the random variables are sampled based on their probability distributions, and then a regular deterministic user equilibrium assignment is carried out to produce link flows. The link flows produced at each iteration of the Monte-Carlo simulation are averaged to yield the final flow pattern. Two test networks demonstrate that the proposed algorithms and the traditional algorithm (the Method of Successive Averages) produce similar results and that the proposed algorithms can be extended to the computation of the case in which the random error term depends on measured travel time.  相似文献   

7.
This paper explores the effects of queue spillover in transportation networks, in the context of dynamic traffic assignment. A model of spatial queue is defined to characterize dynamic traffic flow and queuing formation in network links. Network users simultaneously choose departure time and travel route to minimize the travel cost including journey time and unpunctuality penalty. Using some necessary conditions of the dynamic user equilibrium, dynamic network flows are obtained exactly on some networks with typical structure. Various effects of queue spillover are discussed based on the results of these networks, and some new paradoxes of link capacity expansion have been found as a result of such effects. Analytical and exact results in these typical networks show that ignoring queuing length may generate biased solutions, and the link storage capacity is a very important factor concerning the performance of networks.  相似文献   

8.
First-best marginal cost toll for a traffic network with stochastic demand   总被引:1,自引:0,他引:1  
First-best marginal cost pricing (MCP) in traffic networks has been extensively studied with the assumption of deterministic travel demand. However, this assumption may not be realistic as a transportation network is exposed to various uncertainties. This paper investigates MCP in a traffic network under stochastic travel demand. Cases of both fixed and elastic demand are considered. In the fixed demand case, travel demand is represented as a random variable, whereas in the elastic demand case, a pre-specified random variable is introduced into the demand function. The paper also considers a set of assumptions of traveler behavior. In the first case, it is assumed that the traveler considers only the mean travel time in the route choice decision (risk-neutral behavior), and in the second, both the mean and the variance of travel time are introduced into the route choice model (risk-averse behavior). A closed-form formulation of the true marginal cost toll for the stochastic network (SN-MCP) is derived from the variational inequality conditions of the system optimum and user equilibrium assignments. The key finding is that the calculation of the SN-MCP model cannot be made by simply substituting related terms in the original MCP model by their expected values. The paper provides a general function of SN-MCP and derives the closed-form SN-MCP formulation for specific cases with lognormal and normal stochastic travel demand. Four numerical examples are explored to compare network performance under the SN-MCP and other toll regimes.  相似文献   

9.
This paper extends the bottleneck model to study congestion behavior of morning commute and its implications to transportation economics. The proposed model considers simultaneous route and departure time choices of heterogenous users who are distinguished by their valuation of travel time and punctual arrival. Moreover, two dynamic system optima are considered: one minimizes system cost in the unit of monetary value (i.e., the conventional system optimum, or SO) and the other minimizes system cost in the unit of travel time (i.e., the time-based SO, or TSO). Analytical solutions of no-toll equilibrium, SO and TSO are provided and the welfare effects of the corresponding dynamic congestion pricing options are examined, with and without route choice. The analyses suggest that TSO provides a Pareto-improving solution to the social inequity issue associated with SO. Although a TSO toll is generally discriminatory, anonymous TSO tolls do exist under certain circumstances. Unlike in the case with homogenous users, an SO toll generally alters users’ route choices by tolling the poorer users off the more desirable road, which worsens social inequity. Numerical examples are presented to verify analytical results.  相似文献   

10.
This paper formulates a network design problem (NDP) for finding the optimal public transport service frequencies and link capacity expansions in a multimodal network with consideration of impacts from adverse weather conditions. The proposed NDP aims to minimize the sum of expected total travel time, operational cost of transit services, and construction cost of link capacity expansions under an acceptable level of variance of total travel time. Auto, transit, bus, and walking modes are considered in the multimodal network model for finding the equilibrium flows and travel times. In the proposed network model, demands are assumed to follow Poisson distribution, and weather‐dependent link travel time functions are adopted. A probit‐based stochastic user equilibrium, which is based on the perceived expected travel disutility, is used to determine the multimodal route of the travelers. This model also considers the strategic behavior of the public transport travelers in choosing their routes, that is, common‐line network. Based on the stochastic multimodal model, the mean and variance of total travel time are analytical estimated for setting up the NDP. A sensitivity‐based solution algorithm is proposed for solving the NDP, and two numerical examples are adopted to demonstrate the characteristics of the proposed model. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
This paper investigates the local and global impact of speed limits by considering road users’ non-obedient behavior in speed selection. Given a link-specific speed limit scheme, road users will take into account the subjective travel time cost, the perceived crash risk and the perceived ticket risk as determinant factors for their actual speed choice on each link. Homogeneous travelers’ perceived crash risk is positively related to their driving speed. When travelers are heterogeneous, the perceived crash risk is class-specific: different user classes interact with each other and choose their own optimal speed, resulting in a Nash equilibrium speed pattern. With the speed choices on particular roads, travelers make route choices, resulting in user equilibrium in a general network. An algorithm is proposed to solve the user equilibrium problem with heterogeneous users under link-specific speed limits. The models and algorithms are illustrated with numerical examples.  相似文献   

12.
Major commuting corridors in metropolitan areas generally comprise multiple transportation modes for commuters, such as transit (subways or buses), private vehicles, or park-and-ride combinations. During the morning peak hour, the commuters would choose one of the available transportation modes to travel through the corridors from rural/suburban living areas to urban working areas. This paper introduces a concept of transportation serviceability to evaluate a transportation mode’s service status in a specific link, route, road, or network during a certain period. The serviceability can be measured by the possibility that travelers choose a specific type of transportation service at a certain travel cost. The commuters’ modal-choice possibilities are calculated using a stochastic equilibrium model based on general travel cost. The modeling results illustrate how transportation serviceability is influenced by background traffic flow in a corridor, value of comfort for railway mode, and parking fee distribution.  相似文献   

13.
Previous route choice studies treated uncertainties as randomness; however, it is argued that other uncertainties exist beyond random effects. As a general modeling framework for route choice under uncertainties, this paper presents a model of route choice that incorporates hyperpath and network generalized extreme-value-based link choice models. Accounting for the travel time uncertainty, numerical studies of specified models within the proposed framework are conducted. The modeling framework may be helpful in various research contexts dealing with both randomness and other non-probabilistic uncertainties that cannot be exactly perceived.  相似文献   

14.
15.
In this paper, we proposed an evaluation method of exclusive bus lanes (EBLs) in a bi-modal degradable road network with car and bus transit modes. Link travel time with and without EBLs for two modes is analyzed with link stochastic degradation. Furthermore, route general travel costs are formulated with the uncertainty of link travel time for both modes and the uncertainty of waiting time at a bus stop and in-vehicle congestion costs for the bus mode. The uncertainty of bus waiting time is considered to be relevant to the degradation of the front links of the bus line. A bi-modal user equilibrium model incorporating travelers’ risk adverse behavior is proposed for evaluating EBLs. Finally, two numerical examples are used to illustrate how the road degradation level, travelers’ risk aversion level and the front link’s correlation level with the uncertainty of the bus waiting time affect the results of the user equilibrium model with and without EBLs and how the road degradation level affects the optimal EBLs setting scheme. A paradox of EBLs setting is also illustrated where adding one exclusive bus lane may decrease share of bus.  相似文献   

16.
Road transportation is one of the major sources of greenhouse gas emissions. To reduce energy consumption and alleviate this environmental problem, this study aims to develop an eco-routing algorithm for navigation systems. Considering that both fuel consumption and travel time are important factors when planning a trip, the proposed routing algorithm finds a path that consumes the minimum amount of gasoline while ensuring that the travel time satisfies a specified travel time budget and an on-time arrival probability. We first develop link-based fuel consumption models based on vehicle dynamics, and then the Lagrangian-relaxation-based heuristic approach is proposed to efficiently solve this NP-hard problem. The performance of the proposed eco-routing strategy is verified in a large-scale network with real travel time and fuel consumption data. Specifically, a sensitivity analysis of fuel consumption reduction for travel demand and travel time buffer is discussed in our simulation study.  相似文献   

17.
This paper studies how link-specific speed limits influence the performance of degradable transport networks, in which the capacity of each link is a degradable random variable. The distribution and cumulative distribution of link travel time have been presented with the effect of speed limits taken into account. The mean and variance of link and route travel time are formulated. Three link states have been classified, and their physical meanings have been discussed. The relationship between critical capacity, travel time and speed limit has been elaborated. We have proposed a Speed Limit- and Reliability-based User Equilibrium (SLRUE), adopting travel time budget as the principle of travelers’ route choice. A heuristic method employing the method of successive averages is developed to solve the SLRUE in degradable networks. Through numerical studies, we find that for some networks both the mean and standard deviation of the total travel time could be reduced simultaneously by imposing some speed limits. The speed limit design problem has been studied, and it is found that imposing speed limits cannot always reduce the total travel time budget of a network.  相似文献   

18.
This paper addresses the equilibrium traffic assignment problem involving battery electric vehicles (BEVs) with flow-dependent electricity consumption. Due to the limited driving range and the costly/time-consuming recharging process required by current BEVs, as well as the scarce availability of battery charging/swapping stations, BEV drivers usually experience fear that their batteries may run out of power en route. Therefore, when choosing routes, BEV drivers not only try to minimize their travel costs, but also have to consider the feasibility of their routes. Moreover, considering the potential impact of traffic congestion on the electricity consumption of BEVs, the feasibility of routes may be determined endogenously rather than exogenously. A set of user equilibrium (UE) conditions from the literature is first presented to describe the route choice behaviors of BEV drivers considering flow-dependent electricity consumption. The UE conditions are then formulated as a nonlinear complementarity model. The model is further formulated as a variational inequality (VI) model and is solved using an iterative solution procedure. Numerical examples are provided to demonstrate the proposed models and solution algorithms. Discussions of how to evaluate and improve the system performance with non-unique link flow distribution are offered. A robust congestion pricing model is formulated to obtain a pricing scheme that minimizes the system travel cost under the worst-case tolled flow distribution. Finally, a further extension of the mathematical formulation for the UE conditions is provided.  相似文献   

19.
In this paper, we extend the α-reliable mean-excess traffic equilibrium (METE) model of Chen and Zhou (Transportation Research Part B 44(4), 2010, 493-513) by explicitly modeling the stochastic perception errors within the travelers’ route choice decision processes. In the METE model, each traveler not only considers a travel time budget for ensuring on-time arrival at a confidence level α, but also accounts for the impact of encountering worse travel times in the (1 − α) quantile of the distribution tail. Furthermore, due to the imperfect knowledge of the travel time variability particularly in congested networks without advanced traveler information systems, the travelers’ route choice decisions are based on the perceived travel time distribution rather than the actual travel time distribution. In order to compute the perceived mean-excess travel time, an approximation method based on moment analysis is developed. It involves using the conditional moment generation function to derive the perceived link travel time, the Cornish-Fisher Asymptotic Expansion to estimate the perceived travel time budget, and the Acerbi and Tasche Approximation to estimate the perceived mean-excess travel time. The proposed stochastic mean-excess traffic equilibrium (SMETE) model is formulated as a variational inequality (VI) problem, and solved by a route-based solution algorithm with the use of the modified alternating direction method. Numerical examples are also provided to illustrate the application of the proposed SMETE model and solution method.  相似文献   

20.
Traffic flows in real-life transportation systems vary on a daily basis. According to traffic flow theory, such variability should induce a similar variability in travel times, but this “internal consistency” is generally not captured by existing network equilibrium models. We present an internally-consistent network equilibrium approach, which considers two potential sources of flow variability: (i) daily variation in route choice and (ii) daily variation in origin–destination demand. We particularly aspire to a flexible formulation that permits alternative statistical assumptions, which allows the best fit to be made to observed variability data in particular applications. Joint probability distributions of route—and therefore link—flows are derived under several assumptions concerning stochastic driver behavior. A stochastic network equilibrium model with stochastic demands and route choices is formulated as a fixed point problem. We explore limiting cases which allow an equivalent convex optimization problem to be defined, and finally apply this method to a real-life network of Kanazawa City, Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号