首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper illustrates a ride matching method for commuting trips based on clustering trajectories, and a modeling and simulation framework with ride-sharing behaviors to illustrate its potential impact. It proposes data mining solutions to reduce traffic demand and encourage more environment-friendly behaviors. The main contribution is a new data-driven ride-matching method, which tracks personal preferences of road choices and travel patterns to identify potential ride-sharing routes for carpool commuters. Compared with prevalent carpooling algorithms, which allow users to enter departure and destination information for on-demand trips, the proposed method focuses more on regular commuting trips. The potential effectiveness of the approach is evaluated using a traffic simulation-assignment framework with ride-sharing participation using the routes suggested by our algorithm. Two types of ride-sharing participation scenarios, with and without carpooling information, are considered. A case study with the Chicago tested is conducted to demonstrate the proposed framework’s ability to support better decision-making for carpool commuters. The results indicate that with ride-matching recommendations using shared vehicle trajectory data, carpool programs for commuters contribute to a less congested traffic state and environment-friendly travel patterns.  相似文献   

2.
Peng  Zixuan  Shan  Wenxuan  Jia  Peng  Yu  Bin  Jiang  Yonglei  Yao  Baozhen 《Transportation》2020,47(1):1-21

Ride-sharing enables reduction of private car usage for commuting. This paper proposes a stable matching model for the ride-sharing which aims to minimize the travel cost of all commuters. A payment for the ride-sharing is designed considering the equity and incentive. An algorithm based on the deferred acceptance algorithm is proposed for the model. To verify the model and algorithm, cases with different scales are presented based on Dalian. The results illustrate that the compensation, time window and driver-to-rider ratios can affect the successful matching rate.

  相似文献   

3.
Ride-sharing has often been cited as a successful method to reduce congestion and green house gas emissions. This paper examines the patterns of ride-sharing, in Dublin, and estimates the environmental benefits of ride-sharing both in terms of reductions in emissions and the vehicle kilometres travelled. Data from the 2006 Census of Ireland is used to examine the travel patterns of those that ride-share. The COPERT4 model is used in this paper to estimate the CO2 emissions saved by ride-sharing.  相似文献   

4.
Using the conceptual framework of time–space geography, this paper incorporates both spatio-temporal constraints and household interaction effects into a meaningful measure of the potential of a household to interact with the built environment. Within this context, personal accessibility is described as a measure of the potential ability of individuals within a household not only to reach activity opportunities, but to do so with sufficient time available for participation in those activities, subject to the spatio-temporal constraints imposed by their daily obligations and transportation supply environment. The incorporation of activity-based concepts in the measurement of accessibility as a product of travel time savings not only explicitly acknowledges a temporal dimension in assessing the potential for spatial interaction but also expands the applicability of accessibility consideration to such real-world policy options as the promotion of ride-sharing and trip chaining behaviors. An empirical application of the model system provides an indication of the potential of activity-based modeling approaches to assess the bounds on achievable improvements in accessibility and travel time based on daily household activity patterns. It also provides an assessment of roles for trip chaining and ride-sharing as potentially effective methods to facilitate transportation policy objectives.  相似文献   

5.
Shared autonomous vehicles (SAVs) could provide inexpensive mobility on-demand services. In addition, the autonomous vehicle technology could facilitate the implementation of dynamic ride-sharing (DRS). The widespread adoption of SAVs could provide benefits to society, but also entail risks. For the design of effective policies aiming to realize the advantages of SAVs, a better understanding of how SAVs may be adopted is necessary. This article intends to advance future research about the travel behavior impacts of SAVs, by identifying the characteristics of users who are likely to adopt SAV services and by eliciting willingness to pay measures for service attributes. For this purpose, a stated choice survey was conducted and analyzed, using a mixed logit model. The results show that service attributes including travel cost, travel time and waiting time may be critical determinants of the use of SAVs and the acceptance of DRS. Differences in willingness to pay for service attributes indicate that SAVs with DRS and SAVs without DRS are perceived as two distinct mobility options. The results imply that the adoption of SAVs may differ across cohorts, whereby young individuals and individuals with multimodal travel patterns may be more likely to adopt SAVs. The methodological limitations of the study are also acknowledged. Despite a potential hypothetical bias, the results capture the directionality and relative importance of the attributes of interest.  相似文献   

6.
Despite the pivotal importance of link performance functions to models of transport systems, relatively little work has been done on practical aspects of estimating these functions from observed data. Furthermore it is difficult to find any examples in the literature of estimated urban link performance functions faithfully reproducing theoretical travel time-flow relationships. One reason for the paucity of research in this area is the difficulty and expense of obtaining the requisite data. The increase in automatic collection of traffic flow data goes part way to resolving this problem, but matching such flows to manually recorded travel times can present considerable statistical difficulties in the estimation procedure. This paper considers the estimation of link performance functions from a combination of automatically recorded traffic counts and travel collected by hand, using a non-standard statistical methodology. The study is motivated by a set of data of precisely this type, from the UK city of Leicester.  相似文献   

7.
This paper presents a dynamic vehicle routing and scheduling model that incorporates real time information using variable travel times. Dynamic traffic simulation was used to update travel times. The model was applied to a test road network. Results indicated that the total cost decreased by implementing the dynamic vehicle routing and scheduling model with the real time information based on variable travel times compared with that of the forecast model. As well, in many cases total running times of vehicles were also decreased. Therefore, the dynamic vehicle routing and scheduling model will be beneficial for both carriers in reducing total costs and society at large by alleviating traffic congestion.  相似文献   

8.
Autonomous vehicles (AVs) represent potentially disruptive and innovative changes to public transportation (PT) systems. However, the exact interplay between AV and PT is understudied in existing research. This paper proposes a systematic approach to the design, simulation, and evaluation of integrated autonomous vehicle and public transportation (AV + PT) systems. Two features distinguish this research from the state of the art in the literature: the first is the transit-oriented AV operation with the purpose of supporting existing PT modes; the second is the explicit modeling of the interaction between demand and supply.We highlight the transit-orientation by identifying the synergistic opportunities between AV and PT, which makes AVs more acceptable to all the stakeholders and respects the social-purpose considerations such as maintaining service availability and ensuring equity. Specifically, AV is designed to serve first-mile connections to rail stations and provide efficient shared mobility in low-density suburban areas. The interaction between demand and supply is modeled using a set of system dynamics equations and solved as a fixed-point problem through an iterative simulation procedure. We develop an agent-based simulation platform of service and a discrete choice model of demand as two subproblems. Using a feedback loop between supply and demand, we capture the interaction between the decisions of the service operator and those of the travelers and model the choices of both parties. Considering uncertainties in demand prediction and stochasticity in simulation, we also evaluate the robustness of our fixed-point solution and demonstrate the convergence of the proposed method empirically.We test our approach in a major European city, simulating scenarios with various fleet sizes, vehicle capacities, fare schemes, and hailing strategies such as in-advance requests. Scenarios are evaluated from the perspectives of passengers, AV operators, PT operators, and urban mobility system. Results show the trade off between the level of service and the operational cost, providing insight for fleet sizing to reach the optimal balance. Our simulated experiments show that encouraging ride-sharing, allowing in-advance requests, and combining fare with transit help enable service integration and encourage sustainable travel. Both the transit-oriented AV operation and the demand-supply interaction are essential components for defining and assessing the roles of the AV technology in our future transportation systems, especially those with ample and robust transit networks.  相似文献   

9.
The development and initial validation results of a micro-simulator for the generation of daily activity-travel patterns are presented in this paper. The simulator assumes a sequential history and time-of-day dependent structure. Its components are developed based on a decomposition of a daily activity-travel pattern into components to which certain aspects of observed activity-travel behavior correspond, thus establishing a link between mathematical models and observational data. Each of the model components is relatively simple and is estimated using commonly adopted estimation methods and existing data sets. A computer code has been developed and daily travel patterns have been generated by Monte Carlo simulation. Study results show that individuals' daily travel patterns can be synthesized in a practical manner by micro-simulation. Results of validation analyses suggest that properly representing rigidities in daily schedules is important in simulating daily travel patterns. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Truck flow patterns are known to vary by season and time-of-day, and to have important implications for freight modeling, highway infrastructure design and operation, and energy and environmental impacts. However, such variations cannot be captured by current truck data sources such as surveys or point detectors. To facilitate development of detailed truck flow pattern data, this paper describes a new truck tracking algorithm that was developed to estimate path flows of trucks by adopting a linear data fusion method utilizing weigh-in-motion (WIM) and inductive loop point detectors. A Selective Weighted Bayesian Model (SWBM) was developed to match individual vehicles between two detector locations using truck physical attributes and inductive waveform signatures. Key feature variables were identified and weighted via Bayesian modeling to improve vehicle matching performance. Data for model development were collected from two WIM sites spanning 26 miles in California where only 11 percent of trucks observed at the downstream site traversed the whole corridor. The tracking model showed 81 percent of correct matching rate to the trucks declared as through trucks from the algorithm. This high accuracy showed that the tracking model is capable of not only correctly matching through vehicles but also successfully filtering out non-through vehicles on this relatively long distance corridor. In addition, the results showed that a Bayesian approach with full integration of two complementary detector data types could successfully track trucks over long distances by minimizing the impacts of measurement variations or errors from the detection systems employed in the tracking process. In a separate case study, the algorithm was implemented over an even longer 65-mile freeway section and demonstrated that the proposed algorithm is capable of providing valuable insights into truck travel patterns and industrial affiliation to yield a comprehensive truck activity data source.  相似文献   

11.
The combination of increasing challenges in administering household travel surveys and advances in global positioning systems (GPS)/geographic information systems (GIS) technologies motivated this project. It tests the feasibility of using a passive travel data collection methodology in a complex urban environment, by developing GIS algorithms to automatically detect travel modes and trip purposes. The study was conducted in New York City where the multi-dimensional challenges include urban canyon effects, an extreme dense and diverse set of land use patterns, and a complex transit network. Our study uses a multi-modal transportation network, a set of rules to achieve both complexity and flexibility for travel mode detection, and develops procedures and models for trip end clustering and trip purpose prediction. The study results are promising, reporting success rates ranging from 60% to 95%, suggesting that in the future, conventional self-reported travel surveys may be supplemented, or even replaced, by passive data collection methods.  相似文献   

12.
Effective prediction of bus arrival times is important to advanced traveler information systems (ATIS). Here a hybrid model, based on support vector machine (SVM) and Kalman filtering technique, is presented to predict bus arrival times. In the model, the SVM model predicts the baseline travel times on the basic of historical trips occurring data at given time‐of‐day, weather conditions, route segment, the travel times on the current segment, and the latest travel times on the predicted segment; the Kalman filtering‐based dynamic algorithm uses the latest bus arrival information, together with estimated baseline travel times, to predict arrival times at the next point. The predicted bus arrival times are examined by data of bus no. 7 in a satellite town of Dalian in China. Results show that the hybrid model proposed in this paper is feasible and applicable in bus arrival time forecasting area, and generally provides better performance than artificial neural network (ANN)–based methods. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper analyzes and compares two different relative spatial position (RSP) designs in an integrated e-hailing/fixed-route transit system: a zone-based design that operates e-hailing vehicles within a zone, and a line-based design that operates e-hailing vehicles along a fixed-route transit line and with a stable headway. To conduct a meaningful comparison, the optimal design problems for both systems are formulated using a same analytical framework based on the continuous approximation approach. A comprehensive numerical experiment is performed to compare various cost components corresponding to the optimal designs, and a discrete-event simulation model is developed to validate the analysis. The analytical and simulation results agree with each other well, with a discrepancy in the total system cost less than 5% in most test scenarios. These results also suggest that the line-based system consistently outperforms the zone-based system in terms of both agency and user costs, for all scenarios tested. Compared to the zone-based design, the line-based design features a sparser fixed-route network (resulting in larger stop spacing) but a higher dispatching frequency. It is concluded that the higher efficiency of the line-based design is likely derived from the strategy of operating e-hailing vehicles with a more regular route/headway structure and allowing ride-sharing.  相似文献   

14.
This paper describes a methodology for validating online dynamic O–D matrix estimation models using loop detector data in large-scale transportation networks. The simulation procedure focuses on travel aspects related to the collective trip structure of users, including the amount and duration of trips between O–D pairs, trip departure rates, average travel time from each origin and combinations of them. The analysis identifies emerging systematic patterns between these factors and issues related to the model performance, including network scale effects. This procedure aims to enhance the usage of prior O–D information based on, e.g. travel surveys, that are typically used in the estimation process. Moreover, it seeks to integrate the validation of dynamic O–D matrix estimation models with strategies for identifying target population groups for online planning and assessment of real-time travel information services within the context of Advanced Traveler Information Systems (ATIS).  相似文献   

15.
The paper adopts the framework employed by the existing dynamic assignment models, which analyse specific network forms, and develops a methodology for analysing general networks. Traffic conditions within a link are assumed to be homogeneous, and the time varying O-D travel times and traffic flow patterns are calculated using elementary relationships from traffic flow theory and link volume conservation equations. Each individual is assumed to select a departure time and a route by trading off the travel time and schedule delay associated with each alternative. A route is considered as reasonable if it includes only links which do not take the traveller back to the origin. The set of reasonable routes is not consistant but depends on the time that an individual decides to depart from his origin. Equilibrium distributions are derived from a Markovian model which describes the evolution of travel patterns from day to day. Numerical simulation experiments are conducted to analyse the impact of different work start time flexibilities on the time dependent travel patterns. The similarity between link flows and travel times obtained from static and dynamic stochastic assignment is investigated. It is shown that in congested networks the application of static assignment results in travel times which are lower than the ones predicted by dynamic assignment.  相似文献   

16.
Pooling, or ride-sharing, is a term coined in the United States (U.S.) to describe various forms of collective travel organised for, and often by, specific groups of commuters with similar travel requirements. Its different forms include bus pooling (financially self-supporting works bus or commuter coach services), minibus pooling (van pooling in U.S. terminology) and car pooling. It has been claimed that these forms of collective travel offer a more personalised service than conventional stage carriage buses, and therefore have a greater chance of attracting solo car drivers and increasing vehicle occupancies. This, in turn, can lead to lower fuel consumption and reduced traffic congestion at peak times. Following the advent of oil shortages in the winter of 1973/74, considerable efforts were made in the U.S. to promote pooling initiatives. This gave rise to the publication of a substantial volume of literature that sometimes indicated significant resource-saving achievements. This paper considers the potential for bus, minibus and car pooling in Great Britain, drawing both on relevant theoretical and economic studies, and on practical operational experience. It concludes that under reasonable assumptions about the transport situation in the next decade or so, pooling could become increasingly useful for solving the travel problems of individual local groups, but that it is unlikely to become a major mode in terms of the numbers of trips carried. The effects of recent legislative changes are discussed, and the justification for further change assessed. Relevant comparisons are made with the U.S.Crown Copyright 1983. Extracts from the text may be reproduced, except for commercial purposes, provided the source is acknowledged.  相似文献   

17.
We present an adaptive cruise control (ACC) strategy where the acceleration characteristics, that is, the driving style automatically adapts to different traffic situations. The three components of the concept are the ACC itself, implemented in the form of a car-following model, an algorithm for the automatic real-time detection of the traffic situation based on local information, and a strategy matrix to adapt the driving characteristics (that is, the parameters of the ACC controller) to the traffic conditions. Optionally, inter-vehicle and infrastructure-to-car communication can be used to improve the accuracy of determining the traffic states. Within a microscopic simulation framework, we have simulated the complete concept on a road section with an on-ramp bottleneck, using empirical loop-detector data for an afternoon rush-hour as input for the upstream boundary. We found that the ACC vehicles improve the traffic stability and the dynamic road capacity. While traffic congestion in the reference scenario was completely eliminated when simulating a proportion of 25% ACC vehicles, travel times were already significantly reduced for much lower penetration rates. The efficiency of the proposed driving strategy even for low market penetrations is a promising result for a successful application in future driver assistance systems.  相似文献   

18.
The acquisition of pre-trip information: A stated preference approach   总被引:3,自引:0,他引:3  
This paper describes a study into the effects of pre-trip information on travel behaviour, carried out as part of the DRIVE project EURONETT. The aim of the study was to investigate travellers' requirements for different types of travel information and methods of enquiry and to relate the process of information acquisition to changes in travel behaviour. The study was carried out using a stated preference approach, built on the use of a microcomputer based simulation of an in-home pre-trip information system offering information on travel times from home to City Centre, by bus and car, at different times of the day. A novel feature of the stated preference exercise was that respondents effectively generated their own choice set of alternatives through the process of information acquisition. Surveys were undertaken in parallel in Birmingham and Athens, thus allowing a comparison to be made between behaviour in typical Southern and Northern European settings.The first part of the paper discusses some of the fundamental behavioural and modelling issues raised by the introduction of advanced traveller information systems. It then describes the study methodology and the stated preference experiment. Results are presented from an analysis of the information acquisition process itself and from choice models relating the acquired information to effects on different dimensions of travel behaviour.  相似文献   

19.
《运输评论》2012,32(1):35-53
ABSTRACT

Reducing the travel time of emergency vehicles (EVs) is an effective way to improve critical services such as ambulance, fire, and police. Route optimisation and pre-emption are powerful techniques used to reduce EV travel time. This paper presents a systematic literature review of optimisation and pre-emption techniques for routing EVs. A detailed classification of existing techniques is presented along with critical analysis and discussion. The study observes the limitations of existing routing systems and lack of real-world applications of the proposed pre-emption systems, leading to several interesting and important knowledge and implementation gaps that require further investigation. These gaps include optimisations using real-time dynamic traffic data, considering time to travel as a critical parameter within dynamic route planning algorithms, considering advanced algorithms, assessing and minimising the effects of EV routing on other traffic, and addressing safety concerns in traffic networks containing multiple EVs at the same time.  相似文献   

20.
Optimization of on-demand transportation systems and ride-sharing services involves solving a class of complex vehicle routing problems with pickup and delivery with time windows (VRPPDTW). This paper first proposes a new time-discretized multi-commodity network flow model for the VRPPDTW based on the integration of vehicles’ carrying states within space–time transportation networks, so as to allow a joint optimization of passenger-to-vehicle assignment and turn-by-turn routing in congested transportation networks. Our three-dimensional state–space–time network construct is able to comprehensively enumerate possible transportation states at any given time along vehicle space–time paths, and further allows a forward dynamic programming solution algorithm to solve the single vehicle VRPPDTW problem. By utilizing a Lagrangian relaxation approach, the primal multi-vehicle routing problem is decomposed to a sequence of single vehicle routing sub-problems, with Lagrangian multipliers for individual passengers’ requests being updated by sub-gradient-based algorithms. We further discuss a number of search space reduction strategies and test our algorithms, implemented through a specialized program in C++, on medium-scale and large-scale transportation networks, namely the Chicago sketch and Phoenix regional networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号