首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Although real-time Automatic Vehicle Location (AVL) data is being utilised successfully in the UK, little notice has been given to the benefits of historical (non-real-time) AVL data. This paper illustrates how historical AVL data can be used to identify segments of a bus route which would benefit most from bus priority measures and to improve scheduling by highlighting locations at which the greatest deviation from schedule occurs. A new methodology which uses historical AVL data and on-bus passenger counts to calculate the passenger arrival rate at stops along a bus route has been used to estimate annual patronage and the speed of buses as they move between stops. Estimating the patronage at stops using AVL data is more cost-effective than conventional methods (such as surveys at stops which require much more manpower) but retains the benefits of accuracy and stop-specific estimates of annual patronage. The passenger arrival rate can then be used to calculate how long buses spend at stops. If the time buses spend at stops is removed from the total time it takes the bus to traverse a link, the remaining amount of time can be assumed to be the time the bus spends moving and hence the moving speed of the bus can be obtained. It was found that estimation of patronage and the speed of buses as they move between stops using AVL data produced results which were comparable with those obtained by other methods. However the main point to note is that this new method of estimating patronage has the potential to provide a larger and superior data set than is otherwise available, at very low cost.  相似文献   

2.
Transit agencies often provide travelers with point estimates of bus travel times to downstream stops to improve the perceived reliability of bus transit systems. Prediction models that can estimate both point estimates and the level of uncertainty associated with these estimates (e.g., travel time variance) might help to further improve reliability by tempering user expectations. In this paper, accelerated failure time survival models are proposed to provide such simultaneous predictions. Data from a headway-based bus route serving the Pennsylvania State University-University Park campus were used to estimate bus travel times using the proposed survival model and traditional linear regression frameworks for comparison. Overall, the accuracy of point estimates from the two approaches, measured using the root-mean-squared errors (RMSEs) and mean absolute errors (MAEs), was similar. This suggests that both methods predict travel times equally well. However, the survival models were found to more accurately describe the uncertainty associated with the predictions. Furthermore, survival model estimates were found to have smaller uncertainties on average, especially when predicted travel times were small. Tests for transferability over time suggested that the models did not over-fit the dataset and validated the predictive ability of models established with historical data. Overall, the survival model approach appears to be a promising method to predict both expected bus travel times and the uncertainty associated with these travel times.  相似文献   

3.
Upon having loaded and unloaded their passengers, buses are often free to exit a multi-berth bus stop without delay. A bus need not wait to perform this exit maneuver, even if it requires circumventing one or more other buses that are still dwelling in the stop’s downstream berths. Yet, many jurisdictions impose restrictions on bus entry maneuvers into a stop to limit disruptions to cars and other buses. Buses are typically prohibited from entering a stop whenever this would require maneuvering around other buses still dwelling in upstream berths. An entering bus is instead required to wait in queue until the upstream berths are vacated.Analytical models are formulated to predict how bus discharge flows from busy, multi-berth stops are affected by allowing buses to freely exit, but not freely enter berths. These models apply when: a bus queue is always present at the stop’s entrance; buses depart the entry queue and enter the stop as per the restriction described above; and the stop is isolated from the effects of nearby traffic signals and other bus stops. We find that for these restricted-entry stops, bus-carrying capacities can often be improved by regulating the exit maneuvers as well. This turns out to be particularly true when the stop’s number of berths is large. Simulations show that these findings still hold when a stop is only moderately busy with entry queues that persist for much, but not all of the time. The simulations also indicate that removing any restrictions on bus exit maneuvers is almost always productive when stops are not busy, such that short entry queues form only on occasion, and only for short periods. We argue why certain simple policies for regulating exit maneuvers would likely enhance bus-stop discharge flows.  相似文献   

4.
Control strategies have been widely used in the literature to counteract the effects of bus bunching in passenger‘s waiting times and its variability. These strategies have only been studied for the case of a single bus line in a corridor. However, in many real cases this assumption does not hold. Indeed, there are many transit corridors with multiple bus lines interacting, and this interaction affects the efficiency of the implemented control mechanism.This work develops an optimization model capable of executing a control scheme based on holding strategy for a corridor with multiple bus lines.We analyzed the benefits in the level of service of the public transport system when considering a central operator who wants to maximize the level of service for users of all the bus lines, versus scenarios where each bus line operates independently. A simulation was carried out considering two medium frequency bus lines that serve a set of stops and where these two bus lines coexist in a given subset of stops. In the simulation we compared the existence of a central operator, using the optimization model we developed, against the independent operation of each line.In the simulations the central operator showed a greater reduction in the overall waiting time of the passengers of 55% compared to a no control scenario. It also provided a balanced load of the buses along the corridor, and a lower variability of the bus headways in the subset of stops where the lines coexist, thus obtaining better reliability for all types of passengers present in the public transport system.  相似文献   

5.
Improving the reliability of bus service has the potential to increase the attractiveness of public transit to current and prospective riders. An understanding of service reliability is necessary to develop strategies that help transit agencies provide better services. However, few studies have been conducted analyzing bus reliability in the metropolis of China. This paper presents an in-depth analysis of service reliability based on bus operational characteristics in Beijing. Three performance parameters, punctuality index based on routes (PIR), deviation index based on stops (DIS), and evenness index based on stops (EIS), are proposed for the evaluation of bus service reliability. Reliability involves routes, stops, punctuality, deviation, and evenness. The relationship among the three parameters is discussed using a numerical example. Subsequently, through a sampling survey of bus lines in Beijing, service reliability at the stop, route, and network levels are estimated. The effects of route length, headway, the distance from the stop to the origin terminal, and the use of exclusive bus lanes are also analyzed. The results indicate low service reliability for buses in Beijing and a high correlation between service reliability and route length, headway, distance from the stop to the origin terminal, and the provision of exclusive bus lanes.  相似文献   

6.
If bus service departure times are not completely unknown to the passengers, non-uniform passenger arrival patterns can be expected. We propose that passengers decide their arrival time at stops based on a continuous logit model that considers the risk of missing services. Expected passenger waiting times are derived in a bus system that allows also for overtaking between bus services. We then propose an algorithm to derive the dwell time of subsequent buses serving a stop in order to illustrate when bus bunching might occur. We show that non-uniform arrival patterns can significantly influence the bus bunching process. With case studies we find that, even without exogenous delay, bunching can arise when the boarding rate is insufficient given the level of overall demand. Further, in case of exogenous delay, non-uniform arrivals can either worsen or improve the bunching conditions, depending on the level of delay. We conclude that therefore such effects should be considered when service control measures are discussed.  相似文献   

7.
A significant proportion of bus travel time is contributed by dwell time for passenger boarding and alighting. More accurate estimation of bus dwell time (BDT) can enhance efficiency and reliability of public transportation system. Regression and probabilistic models are commonly used in literatures where a set of independent variables are used to define the statistical relationship between BDT and its contributing factors. However, due to technical and monetary constraints, it is not always feasible to collect all the data required for the models to work. More importantly, the contributing factors may vary from one bus route to another. Time series based methods can be of great interest as they require only historical time series data, which can be collected using a facility known as automatic vehicle location (AVL) system. This paper assesses four different time series based methods namely random walk, exponential smoothing, moving average (MA), and autoregressive integrated moving average to model and estimate BDT based on AVL data collected from Auckland. The performances of the proposed methods are ranked based on three important factors namely prediction accuracy, simplicity, and robustness. The models showed promising results and performed differently for central business district (CBD) and non‐CBD bus stops. For CBD bus stops, MA model performed the best, whereas for non‐CBD bus stops, ARIMA model performed the best compared with other time series based models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Time of day partition of bus operating hours is a prerequisite of bus schedule design. Reasonable partition plan is essential to improve the punctuality and level of service. In most mega cities, bus vehicles have been equipped with global positioning system (GPS) devices, which is convenient for transit agency to monitor bus operations. In this paper, a new algorithm is developed based on GPS data to partition bus operating hours into time of day intervals. Firstly, the impacts of passenger demand and network traffic state on bus operational performance are analyzed. Then bus dwell time at stops and inter-stop travel time, which can be attained based on GPS data, are selected as partition indexes. For buses clustered in the same time-of-day interval, threshold values of differences in dwell time at stops and inter-stop travel time are determined. The buses in the same time-of-day interval should have adjacent dispatching numbers, which is set as a constraint. Consequently, a partition algorithm with three steps is developed. Finally, a bus route in Suzhou China is taken as an example to validate the algorithm. Three partition schemes are given by setting different threshold values for the two partition indexes. The present scheme in practice is compared with the three proposed schemes. To balance the number of ToD intervals and partition precision, a Benefit Evaluation Index is proposed, for a better time-of-day interval plan.  相似文献   

9.
Microeconomic optimisation of scheduled public transport operations has traditionally focused on finding optimal values for the frequency of service, capacity of vehicles, number of lines and distance between stops. In addition, however, there exist other elements in the system that present a trade-off between the interests of users and operators that have not received attention in the literature, such as the optimal selection of a fare payment system and a designed running speed (i.e., the cruising speed that buses maintain in between two consecutive stops). Alternative fare payment methods (e.g., on-board and off-board, payment by cash, magnetic strip or smart card) have different boarding times and capital costs, with the more efficient systems such as a contactless smart card imposing higher amounts of capital investment. Based on empirical data from several Bus Rapid Transit systems around the world, we also find that there is a positive relationship between infrastructure cost per kilometre and commercial speed (including stops), achieved by the buses, which we further postulate as a linear relationship between infrastructure investment and running speed. Given this context, we develop a microeconomic model for the operation of a bus corridor that minimises total cost (users and operator) and has five decision variables: frequency, capacity of vehicles, station spacing, fare payment system and running speed, thus extending the traditional framework. Congestion, induced by bus frequency, plays an important role in the design of the system, as queues develop behind high demand bus stops when the frequency is high. We show that (i) an off-board fare payment system is the most cost effective in the majority of circumstances; (ii) bus congestion results in decreased frequency while fare and bus capacity increase, and (iii) the optimal running speed grows with the logarithm of demand.  相似文献   

10.
《运输规划与技术》2012,35(8):825-847
ABSTRACT

In recent years, public transport has been developing rapidly and producing large amounts of traffic data. Emerging big data-mining techniques enable the application of these data in a variety of ways. This study uses bus intelligent card (IC card) data and global positioning system (GPS) data to estimate passenger boarding and alighting stations. First, an estimation model for boarding stations is introduced to determine passenger boarding stations. Then, the authors propose an innovative uplink and downlink information identification model (UDI) to generate information for estimating alighting stations. Subsequently, the estimation model for the alighting stations is introduced. In addition, a transfer station identification model is also developed to determine transfer stations. These models are applied to Yinchuan, China to analyze passenger flow characteristics and bus operations. The authors obtain passenger flows based on stations (stops), bus lines, and traffic analysis zones (TAZ) during weekdays and weekends. Moreover, average bus operational speeds are obtained. These findings can be used in bus network planning and optimization as well as bus operation scheduling.  相似文献   

11.
This paper proposes a new dynamic bus control strategy aimed at reducing the negative effects of time-headway variations on route performance, based on real-time bus tracking data at stops. In routes with high demand, any delay of a single vehicle ends up causing an unstable motion of buses and producing the bus bunching phenomena. This strategy controls the cruising speed of buses and considers the extension of the green phase of traffic lights at intersections, when a bus is significantly delayed. The performance of this strategy will be compared to the current static operation technique based on the provision of slack times at holding points. An operational model is presented in order to estimate the effects of each controlling strategy, taking into account the vehicle capacity constraint. Control strategies are assessed in terms of passenger total travel time, operating cost as well as on the coefficient of headway variation. The effects of controlling strategies are tested in an idealized bus route under different operational settings and in the bus route of highest demand in Barcelona by simulation. The results show that the proposed dynamic controlling strategy reduces total system cost (user and agency) by 15–40% as well as the coefficient of headway variation 53–78% regarding the uncontrolled case, providing a bus performance similar to the expected when time disturbance is not presented.  相似文献   

12.
School bus routing is a complex and expensive transportation problem for many public school districts. Typical school bus routes serve a single school, but mixed load school bus routes carry students for more than one school at the same time. A mixed load policy reduces the number of stops and distance to pick up and drop off children, but it can increase travel distance by visiting multiple schools. This paper provides a general strategic analysis using continuous approximation models to assess the conditions under which mixed loading is likely to be beneficial. We also present a case study for a semi-rural Missouri school district to illustrate the application of the models in practice. Results show that mixed load routing is more beneficial for larger districts, when a large percentage of bus stops are shared by students of different schools, and when schools are closer together.  相似文献   

13.
In the absence of system control strategies, it is common to observe bus bunching in transit operations. A transit operator would benefit from an accurate forecast of bus operations in order to control the system before it becomes too disrupted to be restored to a stable condition. To accomplish this, we present a general bus prediction framework. This framework relies on a stochastic and event-based bus operation model that provides sets of possible bus trajectories based on the observation of current bus positions, available via global positioning system (GPS) data. The median of the set of possible trajectories, called a particle, is used as the prediction. In particular, this enables the anticipation of irregularities between buses. Several bus models are proposed depending on the dwell and inter-stop running time representations. These models are calibrated and applied to a real case study thanks to the high quality data provided by TriMet (the Portland, Oregon, USA transit district). Predictions are finally evaluated by an a posteriori comparison with the real trajectories. The results highlight that only bus models accounting for the bus load can provide valid forecasts of a bus route over a large prediction horizon, especially for headway variations. Accounting for traffic signal timings and actual traffic flows does not significantly improves the prediction. Such a framework paves the way for further development of refined dynamic control strategies for bus operations.  相似文献   

14.
This paper models part of a public transport network (PTN), specifically, a bus route, as a small-size multi-agent system (MAS). The proposed approach is applied to a case study considering a ‘real world’ bus line within the PTN in Auckland, New Zealand. The MAS-based analysis uses modeling and simulation to examine the characteristics of the observed system – autonomous agents interacting with one another – under different scenarios, considering bus capacity and frequency of service for existing and projected public transport (PT) demand. A simulation model of a bus route is developed, calibrated and validated. Several results are attained, such as when the PT passenger load is not close to bus capacity, this load has no effect on average passenger waiting time at bus stops. The model proposed can be useful to practitioners as a tool to model the interaction between buses and other agents.  相似文献   

15.
A mathematical model is developed in this paper to improve the accessibility of a bus service. To formulate the optimization model, a segment of a bus route is given, on which a number of demand entry points are distributed realistically. The objective total cost function (i.e. the sum of supplier and user costs) is minimized by optimizing the number and locations of stops, subject to non‐additive users' value of time. A numerical example is designed to demonstrate the effectiveness of the method thus developed to optimize the bus stop location problem. The sensitivity of the total cost to various parameters (e.g. value of users' time, access speed, and demand density) and the effect of the parameters on the optimal stop locations are analyzed and discussed.  相似文献   

16.
The Intermittent Bus Lane signals setting within an area   总被引:3,自引:0,他引:3  
Intermittent Bus Lane (IBL) used for bus priority is a lane in which the status of a given section changes according to the presence or not of a bus in its spatial domain: when a bus is approaching such a section, the status of that lane is changed to BUS lane, and after the bus moves out of the section, it becomes a normal lane again, open to general traffic. Therefore when bus services are not so frequent, general traffic will not suffer much, and bus priority can still be obtained. This measure can be operating at a single city block, but if all related control parameters along bus lines are considered together, more time gains can be obtained. In this paper, the basic structure and operation of IBL around a single intersection are briefly introduced, then the construction of an objective function and its relationships with the related priority control parameters along one bus line and their simplifications are described. Finally the calculations of the priority control parameters when there are several connected bus lines within an area and some simulation results are discussed.  相似文献   

17.
文章结合高速公路发展现状,系统地阐述了高速公路上客车停靠站建设的必要性,并根据高速公路的特点,研究了停靠站点的基本类型,分析了停靠站的线形及横断面几何设计方法。  相似文献   

18.
The prediction of electric city bus energy demand is crucial in order to estimate operating costs and to size components such as the battery and charging systems. Unfortunately, there are unpredictable dynamic factors that can cause variation in the energy demand, particularly concerning driver choices and traffic levels. The impact of these factors on energy demand has been difficult to study since fast computing sufficiently accurate dynamic simulation models have been missing, properly quantified in terms of relevant inputs which contribute to energy demand. The objective is to develop and validate a novel electric city bus model for computing the energy demand, to study the nature and impact of various input factors. The developed equation-based model predicted real-world electric city bus energy consumption within 0.1% error. The most crucial unmeasurable input factors were the driven bus route, the number of stops, the elevation profile, the traffic level and the driving style. This understanding can be used to specify routes and stops for a given electric bus battery capacity. Worst-case scenarios are also necessary for electric bus sizing analysis. The best- and worst-case levels of the crucial factors were identified and with them synthetic best- and worst-case speed profiles were generated to demonstrate their effect to the energy demand. While the measured nominal consumption was 0.70 kWh/km, the computed range of variation was between 0.19 kWh/km and 1.34 kWh/km. For design sizing purposes, an electric city bus can have a broad range of possible energy consumption rates due to mission condition variations.  相似文献   

19.
This paper develops an application-oriented model to estimate waiting times as a function of bus departure time intervals. Bus stops are classified into Type A and B depending on whether they are connected with urban rail transit systems. Distributions of passenger arrival rates are analyzed based on field data for Beijing. The results indicate that the best fits for the distribution of passenger arrival rates for Type A and B bus stops are the lognormal distribution and gamma distribution, respectively. By analyzing relationships between passenger arrival rates and bus departure time intervals, it is demonstrated that parameters of the passenger arrival rate distribution can be expressed by the average and coefficient of variation of bus departure time intervals in functional relationships. The validation shows that the model provides a reliable estimation of the average passenger waiting time based on readily available bus departure time intervals.  相似文献   

20.
This paper presents a general framework to estimate the bus user time benefits of a median busway including the effects on travel time and access time. Unlike previous models, we take into account the effects of geometry and the interaction with the demand structure. Models for predicting the bus in-vehicle time benefits of a median dual carriageway busway against mixed traffic condition on 2 and 3 lanes roads are estimated using data from a case study in Santiago (Chile), using a bus travel time model empirically estimated and considering different base case situations, including mixed traffic operations and bus lanes. Results of the application show that the expected in-vehicle time savings of a median busway might be reduced by access time losses due to increased walking distances and road crossing delays. Also, that net time benefits can vary significantly according to the base situation and the structure of demand considered. These findings point out to the need of including a wider set of impacts when studying the benefits of median busways, beyond in-vehicle time savings only. The empirical work presented here is completely based on passive data coming from GPS and smartcards, what makes easier and cheaper to conduct this type of analysis as well as to do it with a comprehensive scope at an early stage of the development of a BRT project. This framework can be extended to other types of dedicated bus lanes provided that a corresponding bus travel time savings model is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号