首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Taxis make an important contribution to transport in many parts of the world, offering demand‐responsive, door‐to‐door transport. In larger cities, taxis may be hailed on‐street or taken from taxi ranks. Elsewhere, taxis are usually ordered by phone. The objective of a taxi dispatcher is to maximize the efficiency of fleet utilization. While the spatial and temporal distribution of taxi requests has in general a high degree of predictability, real time traffic congestion information can be collected and disseminated to taxis by communication technologies. The efficiency of taxi dispatching may be significantly improved through the anticipation of future requests and traffic conditions. A rolling horizon approach to the optimisation of taxi dispatching is formulated, which takes the stochastic and dynamic nature of the problem into account. Numerical experiments are presented to illustrate the performances of the heuristics, taking the time dependency of travel times and passenger arrivals into account.  相似文献   

2.
This paper formulates a comprehensive methodology for analyzing, quantifying and identifying congestion characteristics based on speed distribution. Utilizing vehicle speed data, a mathematical approach is applied, in order to characterize roadway segments, in terms of travel reliability, congestion severity and duration. We argue that the Gaussian mixture model (GMM) and its parameter combination is the appropriate tool if we are to obtain quantitative congestion measures and rank roadway performance. A significant contribution of our approach is that it is based on assumptions regarding mixed components as well as speed distribution and can be applied to large databases. We test our framework on the greater Toronto and Hamilton area in Ontario, Canada, and conclude that congestion quantification through the application of the GMM can be successfully accomplished. Results indicate that speed patterns differ significantly between counties as well as days of the week.  相似文献   

3.
The interaction between urban transport, land cover change and the distribution of population is a typical manifestation of the urbanization process. As high-grade road, expressway plays a significant role in promoting resource circulation and economic development. Based on the road distribution, land cover and population census data, this study specifically probed the relationship between the expressways and the land cover and population of Beijing. The results show that: (1) as the distance from an expressway increases, the amount of built-up land gradually decreased, and the transfer of land cover near the expressway was more intensive and frequent when compared with that of the whole city; (2) In 2010, a district that was less than 3 km from both sides of the expressway and which occupies one-quarter of the entire city had concentrations of 42% industrial land, 58% of settlement land, and 76% transportation land of the entire city; (3) As for Beijing, the population density was positively correlated to road density, and population density declined with a corresponding increase in buffer distance; (4) The ring area between the Fifth and the Sixth Ring Road featured the greatest density of expressways and the most dramatic changes in both land cover and population. According to our study, there’s a positive interactive feedback relationship between the expressways, land cover and population of Beijing. Also, due to the concentration of population, industry and transport system around the expressways, special attention should be paid to environmental pollution and the inhabitants’ health in this area.  相似文献   

4.
Recent experimental work has shown that the average flow and average density within certain urban networks are related by a unique, reproducible curve known as the Macroscopic Fundamental Diagram (MFD). For networks consisting of a single route this MFD can be predicted analytically; but when the networks consist of multiple overlapping routes experience shows that the flows observed in congestion for a given density are less than those one would predict if the routes were homogeneously congested and did not overlap. These types of networks also tend to jam at densities that are only a fraction of their routes’ average jam density.This paper provides an explanation for these phenomena. It shows that, even for perfectly homogeneous networks with spatially uniform travel patterns, symmetric equilibrium patterns with equal flows and densities across all links are unstable if the average network density is sufficiently high. Instead, the stable equilibrium patterns are asymmetric. For this reason the networks jam at lower densities and exhibit lower flows than one would predict if traffic was evenly distributed.Analysis of small idealized networks that can be treated as simple dynamical systems shows that these networks undergo a bifurcation at a network-specific critical density such that for lower densities the MFDs have predictably high flows and are univalued, and for higher densities the order breaks down. Microsimulations show that this bifurcation also manifests itself in large symmetric networks. In this case though, the bifurcation is more pernicious: once the network density exceeds the critical value, the stable state is one of complete gridlock with zero flow. It is therefore important to ensure in real-world applications that a network’s density never be allowed to approach this critical value.Fortunately, analysis shows that the bifurcation’s critical density increases considerably if some of the drivers choose their routes adaptively in response to traffic conditions. So far, for networks with adaptive drivers, bifurcations have only been observed in simulations, but not (yet) in real life. This could be because real drivers are more adaptive than simulated drivers and/or because the observed real networks were not sufficiently congested.  相似文献   

5.
This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important features related to bottleneck activations and traffic oscillations in congested traffic in a systematic manner. In particular, the analysis of loop detector data from a freeway shows that the use of wavelet-based energy can effectively identify the location of an active bottleneck, the arrival time of the resulting queue at each upstream sensor location, and the start and end of a transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our analysis shows that the wavelet-based energies of individual vehicles can effectively detect the origins of deceleration waves and shed light on possible triggers (e.g., lane-changing). The spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号