首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Moving bottlenecks in highway traffic are defined as a situation in which a slow-moving vehicle, be it a truck hauling heavy equipment or an oversized vehicle, or a long convey, disrupts the continuous flow of the general traffic. The effect of moving bottlenecks on traffic flow is an important factor in the evaluation of network performance. This effect, though, cannot be assessed properly by existing transportation tools, especially when the bottleneck travels relatively long distances in the network.This paper develops a dynamic traffic assignment (DTA) model that can evaluate the effects of moving bottlenecks on network performance in terms of both travel times and traveling paths. The model assumes that the characteristics of the moving bottleneck, such as traveling path, physical dimensions, and desired speed, are predefined and, therefore, suitable for planned conveys.The DTA model is based on a mesoscopic simulation network-loading procedure with unique features that allow assessing the special dynamic characteristics of a moving bottleneck. By permitting traffic density and speed to vary along a link, the simulation can capture the queue caused by the moving bottleneck while preserving the causality principles of traffic dynamics.  相似文献   

2.
Frequency-domain analysis has been successfully used to (i) predict the amplification of traffic oscillations along a platoon of vehicles with nonlinear car-following laws and (ii) measure traffic oscillation properties (e.g., periodicity, magnitude) from field data. This paper proposes a new method to calibrate nonlinear car-following laws based on real-world vehicle trajectories, such that oscillation prediction (based on the calibrated car-following laws) and measurement from the same data can be compared and validated. This calibration method, for the first time, takes into account not only the driver’s car-following behavior but also the vehicle trajectory’s time-domain (e.g., location, speed) and frequency-domain properties (e.g., peak oscillation amplitude). We use Newell’s car-following model (1961) as an example and calibrate its parameters based on a penalty-based maximum likelihood estimation procedure. A series of experiments using Next Generation Simulation (NGSIM) data are conducted to illustrate the applicability and performance of the proposed approach. Results show that the calibrated car-following models are able to simultaneously reproduce observed driver behavior, time-domain trajectories, and oscillation propagation along the platoon with reasonable accuracy.  相似文献   

3.
Frequent lane-changes in highway merging, diverging, and weaving areas could disrupt traffic flow and, even worse, lead to accidents. In this paper, we propose a simple model for studying bottleneck effects of lane-changing traffic and aggregate traffic dynamics of a roadway with lane-changing areas. Based on the observation that, when changing its lane, a vehicle affects traffic on both its current and target lanes, we propose to capture such lateral interactions by introducing a new lane-changing intensity variable. With a modified fundamental diagram, we are able to study the impacts of lane-changing traffic on overall traffic flow. In addition, the corresponding traffic dynamics can be described with a simple kinematic wave model. For a location-dependent lane-changing intensity variable, we discuss kinematic wave solutions of the Riemann problem of the new model and introduce a supply–demand method for its numerical solutions. With both theoretical and empirical analysis, we demonstrate that lane-changes could have significant bottleneck effects on overall traffic flow. In the future, we will be interested in studying lane-changing intensities for different road geometries, locations, on-ramp/off-ramp flows, as well as traffic conditions. The new modeling framework could be helpful for developing ramp-metering and other lane management strategies to mitigate the bottleneck effects of lane-changes.  相似文献   

4.
A simple exercise in data analysis showed that, in queued traffic, a well-defined relation exists between the flow on a homogeneous freeway segment and the segment’s vehicle accumulation. The exercise consisted of constructing cumulative vehicle arrival curves to measure the flows and densities on multiple segments of a queued freeway. At this particular site, each interchange enveloped by the queue exhibited a higher on-ramp flow than off-ramp flow and as a consequence, motorists encountered a steady improvement in traffic conditions (e.g., reduced densities and increased speeds) as they traveled from the tail of the queue to the bottleneck. This finding has practical implications for freeway traffic planning and management. Perhaps most notably, it suggests that the first-order hydrodynamic theory of traffic is adequate for describing some of the more relevant features of queue evolution. This and other practical issues are discussed in some detail.  相似文献   

5.
Certain details of traffic evolution were studied along a 2 km, homogenous freeway segment located upstream of a bottleneck. By comparing (transformed) cumulative curves constructed from the vehicle counts measured at neighboring loop detectors, it was found that waves propagated through queued traffic like a random walk with predictable statistical variation. There was no observed dependency of wave speed on flow. As such, these waves neither focused nor fanned outward and shocks arose only at the interfaces between free-flowing traffic and the back of queues. Although these traffic features may have long been suspected, actual observations of this kind have hitherto not been documented. Also of note, the shocks separating queued and unqueued traffic sometimes exhibited unexpectedly long transitions between these two states. Finally, some observations presented here corroborate earlier reports that, in unqueued traffic, vehicle velocity is insensitive to flows and that forward-moving changes in traffic states therefore travel with vehicles. Taken together, these findings suggest that certain rather simple models suffice for describing traffic on homogeneous freeway segments; brief discussion of this is offered in Section 5.  相似文献   

6.
Oversaturation has become a severe problem for urban intersections, especially the bottleneck intersections that cause queue spillover and network gridlock. Further improvement of oversaturated arterial traffic using traditional mitigation strategies, which aim to improve intersection capacity by merely adjusting signal control parameters, becomes challenging since exiting strategies may (or already) have reached their “theoretical” limits of optimum. Under such circumstance, several novel unconventional intersection designs, including the well-recognized continuous flow intersection (CFI) design, are originated to improve the capacity at bottleneck intersections. However, the requirement of installing extra sub-intersections in a CFI design would increase vehicular stops and, more critically, is unacceptable in tight urban areas with closed spaced intersections. To address these issues, this research proposes a simplified continuous flow intersection (called CFI-Lite) design that is ideal for arterials with short links. It benefits from the CFI concept to enable simultaneous move of left-turn and through traffic at bottleneck intersections, but does not need installation of sub-intersections. Instead, the upstream intersection is utilized to allocate left-turn traffic to the displaced left-turn lane. It is found that the CFI-Lite design performs superiorly to the conventional design and regular CFI design in terms of bottleneck capacity. Pareto capacity improvement for every traffic stream in an arterial system can be achieved under effortless conditions. Case study using data collected at Foothill Blvd in Los Angeles, CA, shows that the new design is beneficial in more than 90% of the 408 studied cycles. The testing also shows that the average improvements of green bandwidths for the synchronized phases are significant.  相似文献   

7.
We propose using a spectral envelope method to analyze traffic oscillations using data collected from multiple sensors. Spectral envelops can reveal not only the salient frequencies of periodic oscillations of traffic flow, but also the relative strength of these oscillations at different locations. This paper first introduces time dimension into the existing spectral envelope method so that it can be applied to study the evolution of vehicular traffic oscillations. The extended spectral envelope method proposed in this paper, or ESPE, discards the normalization procedure in the standard method. A new Contributing Index (CI) is proposed to measure the relative strength of oscillations at different locations. The extended spectral envelops can be constructed on long-term or short-term time scales. While the long-term analysis helps extract salient frequencies of traffic oscillations, the short-term analysis promises to reveal their detailed spatial–temporal profiles. ESPE offers two distinctive advantages. First, it is more robust against the impacts of noises. Second, it is able to uncover complicated oscillatory behaviors which are otherwise difficult to notice. These advantages are demonstrated in case studies constructed on both simulated and real data.  相似文献   

8.
Bus rapid transit (BRT) is a popular strategy to increase transit attraction because of its high‐capacity, comfortable service, and fast travel speed with the exclusive right‐of‐way. Various engineering designs of right‐of‐way and the violation enforcement influence interactions between BRT and general traffic flows. An empirical assessment framework is proposed to investigate traffic congestion and lane‐changing patterns at one typical bottleneck along a BRT corridor. The BRT bottleneck consists of bus lane, BRT station, video enforcement zone, and transit signal priority intersection. We analyze oblique cumulative vehicle counts and oblique cumulative lane‐changing maneuvers extracted from videos. The cumulative vehicle counts method widely applied in revealing queueing dynamics at freeway bottlenecks is extended to an urban BRT corridor. In the study site, we assume four lane‐changing patterns, three of which are verified by the empirical measurements. Investigations of interactions between buses and general traffic show that abnormal behaviors (such as lane violations and slow moving of the general traffic) induce 16% reduction in the saturation rate of general traffic and 17% increase in bus travel time. Further observations show that the BRT station and its induced increasing lane‐changing maneuvers increase the downstream queue discharge flows of general traffic. The empirical results also contribute to more efficient strategies of BRT planning and operations, such as alternative enforcement methods, various lane separation types, and optimized traffic operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
Information and communication technologies used for on-board vehicle monitoring have been adopted as an additional tool to characterize mobility flows. Furthermore, traffic volumes are traditionally measured to understand cities traffic dynamics. This paper presents an innovative methodology that uses an extensive and complementary real-world dataset to make a scenario-based analysis allowing assessing energy consumption impacts of shifting traffic from peak to off-peak hours. In the specific case of the city of Lisbon, a sample of 40 drivers was monitored for a period of six months. The obtained data allowed testing the impacts of increasing the percentage of traffic shifting from peak to off-peak hours in energy consumption. Both average speed and energy consumption variations were quantified for each of the tested percentages, allowing concluding that for traffic shifts of up to 30% a positive impact in consumption can be observed. In terms of potential gains associated to shifting traffic from peak hours, reductions in energy consumption from 0.1% to 0.4% can be obtained for traffic volumes shifts from 5 to 30%. Overall, the maximum reduction in energy consumption is achieved for a 20% traffic shift. Average speed variation follows the same trend as energy consumption, but in the opposite direction, i.e. instead of decreasing, average speed increases. For the best case scenario, considering only the sections of roads with traffic sensors, a 1.4% reduction in trip time may be achieved, as well as savings of up to 6 l of fuel and 14.5 kg of avoided CO2 emissions per day.  相似文献   

10.
The health cost of on-road air pollution exposure is a component of traffic marginal costs that has not previously been assessed. The main objective of this paper is to introduce on-road pollution exposure as an externality of traffic, particularly important during traffic congestion when on-road pollution exposure is highest. Marginal private and external cost equations are developed that include on-road pollution exposure in addition to time, fuel, and pollution emissions components. The marginal external cost of on-road exposure includes terms for the marginal vehicle’s emissions, the increased emissions from all vehicles caused by additional congestion from the marginal vehicle, and the additional exposure duration for all travelers caused by additional congestion from the marginal vehicle. A sensitivity analysis shows that on-road pollution exposure can be a large portion (18%) of marginal social costs of traffic flow near freeway capacity, ranging from 4% to 38% with different exposure parameters. In an optimal pricing scenario, excluding the on-road exposure externality can lead to 6% residual welfare loss because of sub-optimal tolls. While regional pollution generates greater costs in uncongested conditions, on-road exposure comes to dominate health costs on congested freeways because of increased duration and intensity of exposure. The estimated marginal cost and benefit curves indicate a theoretical preference for price controls to address the externality problem. The inclusion of on-road exposure costs reduces the magnitudes of projects required to cover implementation costs for intelligent transportation system (ITS) improvements; the net benefits of road-pricing ITS systems are increased more than the net benefits of ITS traffic flow improvements. When considering distinct vehicle classes, inclusion of on-road exposure costs greatly increases heavy-duty vehicle marginal costs because of their higher emissions rates and greater roadway capacity utilization. Lastly, there are large uncertainties associated with the parameters utilized in the estimation of health outcomes that are a function of travel pollution intensity and duration. More research is needed to develop on-road exposure modeling tools that link repeated short-duration exposure and health outcomes.  相似文献   

11.
This study aims (i) to analyze theoretical properties of a recently proposed describing-function (DF) based approach (Li and Ouyang, 2011; Li et al., 2012) for traffic oscillation quantification, (ii) to adapt it for estimating fuel consumption and emission from traffic oscillation and (iii) to explore vehicle control strategies of smoothing traffic with advanced technologies. The DF approach was developed to predict traffic oscillation propagation across a platoon of vehicles following each other by a nonlinear car-following law with only the leading vehicle’s input. We first simplify the DF approach and prove a set of properties (e.g., existence and uniqueness of its solution) that assure its prediction is always consistent with observed traffic oscillation patterns. Then we integrate the DF approach with existing estimation models of fuel consumption and emission to analytically predict environmental impacts (i.e., unit-distance fuel consumption and emission) from traffic oscillation. The prediction results by the DF approach are validated with both computer simulation and field measurements. Further, we explore how to utilize advantageous features of emerging sensing, communication and control technologies, such as fast response and information sharing, to smooth traffic oscillation and reduce its environmental impacts. We extend the studied car-following law to incorporate these features and apply the DF approach to demonstrate how these features can help dampen the growth of oscillation and environmental impact measurements. For information sharing, we convert the corresponding extended car-following law into a new fixed point problem and propose a simple bisecting based algorithm to efficiently solve it. Numerical experiments show that these new car-following control strategies can effectively suppress development of oscillation amplitude and consequently mitigate fuel consumption and emission.  相似文献   

12.
Details of traffic evolution were studied upstream and downstream of a freeway bottleneck located near a busy on-ramp. It is shown that on certain days the bottleneck became active upon dissipation of a queue emanating from somewhere further downstream. On such occasions, the bottleneck occurred at a fixed location, approximately one kilometer downstream of the merge. Notably, even after the dissipation of a downstream queue, the discharge flows in the active bottleneck were nearly constant, since the cumulative counts never deviated much from a linear trend. The average bottleneck discharge flows were also reproducible from day to day. The diagnostic tools used in this study were curves of cumulative vehicle arrival number versus time and cumulative occupancy versus time constructed from data measured at neighboring freeway loop detectors. Once suitably transformed, these cumulative curves provided the measurement resolution necessary to observe the transitions between freely flowing and queued conditions and to identify some important traffic features.  相似文献   

13.
Highway traffic flow phenomena involve several complex and stochastic variables with high interdependencies. The variations in roadway, traffic and environmental factors influence the traffic flow quality significantly. Capacity analysis of road sections under different traffic and geometric conditions need to quantify the vehicles of widely varying characteristics to a common and universally acceptable unit. Passenger car unit (PCU) is the universally adopted unit of traffic volume, keeping the passenger car as the ‘standard vehicle’ with reference to its static and dynamic characteristics; other vehicles are expressed to its equivalent number in terms of PCUs. The studies carried out in this aspect represent the dynamic nature of impedance caused by a vehicle while moving through a traffic stream. The PCU values recommended by the Highway Capacity Manual are widely applied in many countries; however, their applicability is highly under debate because of the variations in prevailing local traffic conditions. There are several factors that influence the PCU values such as traffic, roadway, vehicle, environmental and control conditions, etc. Apart from vehicular characteristics, the other two major factors that influence the PCU of vehicles are the following: (i) road width and (ii) traffic volume. In this study, estimation of PCU values for the different types of vehicles of a highly heterogeneous traffic on 7.5‐ and 11.0‐m‐wide roads, using micro‐simulation technique, has been dealt with. It has been found that the PCU value of a vehicle type varies significantly with variation in road width and traffic volume. The results of the study indicate that the PCU values are significantly influenced by the said two factors. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
From an operations standpoint the most important function of a traffic surveillance system is determining reliably whether the facility is free flowing or congested. The second most important function is responding rapidly when the facility becomes congested. These functions are complicated by the fact that conventional vehicle detectors are only capable of monitoring discrete points along the roadway while incidents may occur at any location on the facility. The point detectors are typically placed at least one-third of a mile apart and conditions between the detectors must be inferred from the local measurements.This paper presents a new approach for traffic surveillance that addresses these issues. It uses existing dual loop detector stations to match vehicle measurements between stations and monitor the entire roadway. Rather than expending a considerable effort to detect congested conditions, the research employs a relatively simple strategy to look for free flow traffic. Whenever a unique vehicle passes the downstream station, the algorithm looks to see if a similar vehicle passed the upstream station within a time window that is bounded by feasible travel times. The approach provides vehicle reidentification and travel time measurement on freeways during free flow and through the onset of congestion. If desired, other algorithms can be used with the same detectors to provide similar measurements during congested conditions. The work should prove beneficial for traffic management and traveler information applications, while promising to be deployable in the short term.  相似文献   

15.
Cooperative Adaptive Cruise Control (CACC) systems have the potential to increase roadway capacity and mitigate traffic congestion thanks to the short following distance enabled by inter-vehicle communication. However, due to limitations in acceleration and deceleration capabilities of CACC systems, deactivation and switch to ACC or human-driven mode will take place when conditions are outside the operational design domain. Given the lack of elaborate models on this interaction, existing CACC traffic flow models have not yet been able to reproduce realistic CACC vehicle behaviour and pay little attention to the influence of system deactivation on traffic flow at bottlenecks. This study aims to gain insights into the influence of CACC on highway operations at merging bottlenecks by using a realistic CACC model that captures driver-system interactions and string length limits. We conduct systematic traffic simulations for various CACC market penetration rates (MPR) to derive free-flow capacity and queue discharge rate of the merging section and compare these to the capacity of a homogeneous pipeline section. The results show that an increased CACC MPR can indeed increase the roadway capacity. However, the resulting capacity in the merging bottleneck is much lower than the pipeline capacity and capacity drop persists in bottleneck scenarios at all CACC MPR levels. It is also found that CACC increases flow heterogeneity due to the switch among different operation modes. A microscopic investigation of the CACC operational mode and trajectories reveals a close relation between CACC deactivation, traffic congestion and flow heterogeneity.  相似文献   

16.
Mobile sensing enabled by GPS or smart phones has become an increasingly important source of traffic data. For sufficient coverage of the traffic stream, it is important to maintain a reasonable penetration rate of probe vehicles. From the standpoint of capturing higher-order traffic quantities such as acceleration/deceleration, emission and fuel consumption rates, it is desirable to examine the impact on the estimation accuracy of sampling frequency on vehicle position. Of the two issues raised above, the latter is rarely studied in the literature. This paper addresses the impact of both sampling frequency and penetration rate on mobile sensing of highway traffic. To capture inhomogeneous driving conditions and deviation of traffic from the equilibrium state, we employ the second-order phase transition model (PTM). Several data fusion schemes that incorporate vehicle trajectory data into the PTM are proposed. And, a case study of the NGSIM dataset is presented which shows the estimation results of various Eulerian and Lagrangian traffic quantities. The findings show that while first-order traffic quantities can be accurately estimated even with a low sampling frequency, higher-order traffic quantities, such as acceleration, deviation, and emission rate, tend to be misinterpreted due to insufficiently sampled vehicle locations. We also show that a correction factor approach has the potential to reduce the sensing error arising from low sampling frequency and penetration rate, making the estimation of higher-order quantities more robust against insufficient data coverage of the highway traffic.  相似文献   

17.
Evaluation of green wave policy in real-time railway traffic management   总被引:1,自引:0,他引:1  
In order to face the expected growth of transport demand in the next years, several new traffic control policies have been proposed and analyzed both to generate timetables and to effectively manage the traffic in real-time. In this paper, a detailed optimization model is used to analyze one such policy, called green wave, which consists in letting trains wait at the stations to avoid speed profile modifications in open corridors. Such policy is expected to be especially effective when the corridors are the bottleneck of the network. However, there is a lack of quantitative studies on the real-time effects of using this policy. To this end, this work shows a comparison of the delays obtained when trains are allowed or not to change their speed profile in open corridors. An extensive computational study is described for two practical dispatching areas of the Dutch railway network.  相似文献   

18.
We study in this paper the structure of traffic under hypercongestion, which is a controversial issue between traditional two-phase traffic theory and Kerner’s three-phase theory. By analyzing video traffic data from a section of the Nanjing Airport Highway, it is found that traffic states inside hypercongestion are not homogeneous, which contradicts the existence of a “Homogeneous Congested Traffic” state claimed in two-phase traffic theory. Analysis of vehicle trajectories and velocities obtained from an experimental car-following study with a platoon of 25 vehicles also confirms the above findings. Furthermore, it is also found from the video traffic data that the structure of hypercongested traffic varies only slightly with location, which might be due to small jams inside hypercongested traffic merging into larger ones slowly and/or larger jams sometimes breaking into small ones. Finally, the implications of our observations on traffic modeling have been discussed.  相似文献   

19.
An extended open system such as traffic flow is said to be convectively unstable if perturbations of the stationary state grow but propagate in only one direction, so they eventually leave the system. By means of data analysis, simulations, and analytical calculations, we give evidence that this concept is relevant for instabilities of congested traffic flow. We analyze detector data from several hundred traffic jams and propose estimates for the linear growth rate, the wavelength, the propagation velocity, and the severity of the associated bottleneck that can be evaluated semi-automatically. Scatter plots of these quantities reveal systematic dependencies. On the theoretical side, we derive, for a wide class of microscopic and macroscopic traffic models, analytical criteria for convective and absolute linear instabilities. Based on the relative positions of the stability limits in the fundamental diagram, we divide these models into five stability classes which uniquely determine the set of possible elementary spatiotemporal patterns in open systems with a bottleneck. Only two classes, both dominated by convective instabilities, are compatible with observations. By means of approximate solutions of convectively unstable systems with sustained localized noise, we show that the observed spatiotemporal phenomena can also be described analytically. The parameters of the analytical expressions can be inferred from observations, and also (analytically) derived from the model equations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号