共查询到2条相似文献,搜索用时 0 毫秒
1.
Supply chain disruptions are unintended, unwanted situations resulting in a negative supply chain performance. We study the supply chain network design under supply and demand uncertainty with embedded supply chain disruption mitigation strategies, postponement with downward substitution, centralized stocking and supplier sourcing base. We designed an integrated supply-side, manufacturing and demand-side operations network in such that the total expected operating cost is minimized. We modeled it in a deterministic equivalent formulation. An L-shaped decomposition with an additional decomposition step in the master problem is proposed. The computational results showed that parallel sourcing has a cost advantage against single sourcing under supply disruptions. In addition, the build-to-order (BTO) manufacturing mitigation process has its greatest impact with high variations on demands and is integrated with the component downward substitution. Lastly, the manufacturer needs to order differentiated components to cover its requirement for maximal product demand to prevent the loss of sale, even with fewer modules in stock. 相似文献
2.
Establishment of industry facilities often induces heavy vehicle traffic that exacerbates congestion and pavement deterioration in the neighboring highway network. While planning facility locations and land use developments, it is important to take into account the routing of freight vehicles, the impact on public traffic, as well as the planning of pavement rehabilitation. This paper presents an integrated facility location model that simultaneously considers traffic routing under congestion and pavement rehabilitation under deterioration. The objective is to minimize the total cost due to facility investment, transportation cost including traffic delay, and pavement life-cycle costs. Building upon analytical results on optimal pavement rehabilitation, the problem is formulated into a bi-level mixed-integer non-linear program (MINLP), with facility location, freight shipment routing and pavement rehabilitation decisions in the upper level and traffic equilibrium in the lower level. This problem is then reformulated into an equivalent single-level MINLP based on Karush–Kuhn–Tucker (KKT) conditions and approximation by piece-wise linear functions. Numerical experiments on hypothetical and empirical network examples are conducted to show performance of the proposed algorithm and to draw managerial insights. 相似文献