首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
采用内外力矩平衡法,并考虑轨道原始弯曲和非线性道床横向阻力及扣件阻矩,在轨道变形曲线假设为半波正弦曲线的情况下,对无缝线路轨道稳定性进行分析,并推导出钢轨温度力计算公式。输入不同的轨道变形波长,通过优化理论找出最小的钢轨温度力。将此模型的计算结果与使用《铁路轨道设计规范》条文中的轨道稳定性计算方法所得结果进行对比,发现两者计算结果较为接近。相对误差不超过3.8%,从而证明此方法的正确性。  相似文献   

2.
随着我国铁路提速进程的推进,对轨道平顺性的要求日益提高,有砟轨道无缝线路稳定性的研究就显得更加重要。无缝线路稳定性的设计参数(道床横向阻力、轨道原始弯曲、钢轨温升幅度、扣件阻矩系数)具有明显的随机性,运用概率方法对无缝线路稳定性进行分析是十分必要的。本文基于蒙特卡洛方法,分析无缝线路稳定性可靠度,并且采用单参数敏感性分析法,通过改变各参数的平均值,而保持其变异系数不变,对设计参数进行敏感性分析。结果表明,设计参数中的道床横向阻力、轨道原始弯曲、钢轨温升幅度对于无缝线路稳定性可靠度具有较高的敏感性,而扣件阻矩系数对可靠度的影响较小。并且得出一些对于保障行车安全和提高线路养护维修的效益有一定参考价值的结论。  相似文献   

3.
温度力作用下单元板式无砟轨道钢轨横向变形研究   总被引:1,自引:1,他引:0  
为了研究无砟轨道钢轨横向稳定性,以曲线上单元板式无砟轨道无缝线路为对象,建立包括钢轨、扣件、轨道板和限位部件的无砟轨道钢轨横向变形计算模型,结合不同轨道板长度分析钢轨在温度力作用下的横向变形特性,讨论不同、限位部件弹性和初始弯曲半波长对钢轨横向变形幅值和扣件横向抗力的影响。计算表明,巨大温度力可导致钢轨沿线路纵向产生以轨道板为波长的周期横向不平顺,在小半径曲线地段,应采用刚度较大且塑性变形小的弹性限位垫层材料,重视半波长过小的初始弯曲的治理,并加强对钢轨横向位移和板端扣件使用状态的监测。  相似文献   

4.
根据轨道结构特点以及轨道胀轨变形特征,将扣件、轨枕和道床模拟成一个弹性约束单元,导出约束单元的扭转刚度,将线路初始弯曲变形部分模拟成初始弯曲变形单元,从而建立考虑线路初始弯曲变形部分位置发生变化、不同初始弯曲变形弦长和初始弯曲变形矢度以及不同钢轨类型和曲线半径对无缝线路临界温升影响的无缝线路稳定性研究有限元法。算例分析结果表明:曲线半径越大,初始弯曲变形弦长越小,60kg·m-1钢轨线路比50kg·m-1钢轨线路的稳定性更高;曲线半径越小,初始弯曲变形弦长越大,50kg·m-1钢轨线路比60kg·m-1钢轨线路的稳定性更高。对于曲线半径较小的线路,初始弯曲部位越靠近线路纵向两端,线路的稳定性越差;扣件、轨枕和道床组成的约束单元刚度降低,临界温升也随之降低,会影响无缝线路的稳定性。  相似文献   

5.
在CRTSⅡ型板式无砟轨道进行抬轨更换轨道板施工过程中,需选择合理的作业轨温、抬升方式、扣件松开范围等施工参数,以避免施工中钢轨失稳和弯折及扣件损伤。针对该问题,建立钢轨抬升模型,计算分析钢轨抬升过程中不同施工参数对钢轨失稳、钢轨及钢轨扣件受力与变形的影响,总结相关规律并提出合理的施工参数。结果表明,钢轨抬升施工时,抬升间距建议为7.2 m;温差超过20℃可适当增大两抬升点间距。钢轨的抬升量为10 cm时,扣件的松开范围宜为51组扣件,抬轨量每增加1 cm,扣件松开范围宜增加1组扣件;当温差超过20℃时,可适当按照温差每增加1℃,扣件松开数量减少2组扣件进行施工。  相似文献   

6.
为探究高速铁路长钢轨碎弯病害产生及发展机理,采用正矢包络线表征连续弯曲波形的波幅衰减,依据轨道各部件对钢轨横向稳定的贡献建立系统总能量方程,运用能量驻值原理获得温度力解析解,揭示各部分能量占比及影响机理,确定钢轨碎弯的全过程平衡路径并给出考虑横向稳定性的设计锁定轨温计算办法,得到各参数的影响规律.研究结果表明:扣件横向刚度是弯曲半波数和稳定性的控制因素;扣件间距每增加5 cm温升幅度降低2.9℃,初始弯曲由0增至1.0×10-3时温升幅度降低了87.4%,对稳定性影响显著;桥上小阻力扣件刚度衰减50%允许温升降至21.2℃,增加了产生碎弯病害的风险;考虑横向稳定性后设计锁定轨温提高7.6℃,可有效降低钢轨碎弯发生几率.  相似文献   

7.
无缝线路轨道稳定性简便计算方法   总被引:1,自引:1,他引:1  
张向民  陈秀方 《铁道学报》2007,29(1):124-126
无缝线路稳定性分析是无缝线路的理论基础和关键技术。本文在考虑轨道原始弯曲和非线性横向道床阻力的前提下,在轨道变形曲线假设为半波正弦曲线的情况下,应用内外力矩平衡法,进行无缝线路轨道稳定性分析,推导钢轨温度力计算公式。应用多元函数条件极值理论推导最不利的轨道弯曲波长,从而建立简便实用的无缝线路稳定性计算公式。将此模型的计算结果与《铁路线路设备大修规则》中铺设无缝线路允许温差表的要求进行了对比,两者计算结果较为接近。  相似文献   

8.
目的:部分轨道不平顺波对高速铁路车辆系统的振动有较大的影响,需要从轨道结构振动控制的角度,对无砟轨道不平顺敏感波长的分布特征及影响因素进行研究,以降低轨道结构振动,延长轨道结构寿命。方法:介绍了车辆-CRTSⅡ型板式轨道耦合系统的动力学算法,列出车辆-CRTSⅡ型板式轨道耦合系统的运动方程,计算得到了轨道不平顺敏感波长。在分析CRTSⅡ型板式轨道敏感波长的分布特征的基础上,选取列车运行速度、扣件、CA(水泥沥青)砂浆、路基等4种影响因素,选取各影响因素不同工况的计算参数,分析计算各影响因素不同参数取值对轨道高低不平顺敏感波长的影响。结果及结论:轨道高低不平顺敏感波长总体上随列车运行速度增大而增大,但并不是严格的单调变化;扣件各参数主要影响低阶(前5阶)敏感波长,与扣件垂向阻尼相比,扣件垂向刚度对敏感波长的影响更大;CA砂浆各参数对轨道高低不平顺敏感波长几乎无影响;路基各参数对高低不平顺敏感波长的影响与扣件相似。  相似文献   

9.
为进一步研究车辆轨道接触特性和钢轨损伤,采用显式有限元法建立适用于三维轮轨瞬态滚动接触分析的有限元模型,将轮轨间黏着系数、牵引系数、列车速度等考虑在内,研究不同模型参数对轮轨瞬态滚动接触计算的影响.通过详细对比分析扣件系统、钢轨长度、轨道板及参数对轮轨瞬态接触解的影响,并结合车轮模态分析结果,引入不同波长的轨面几何不平...  相似文献   

10.
无砟轨道钢轨碎弯成因分析   总被引:1,自引:0,他引:1  
对无砟轨道无缝线路钢轨碎弯成因进行了分析,认为钢轨纵向温度力、线路横向阻力和钢轨初始弯曲是影响轨条臌曲的主要因素.应用有限单元法建立了包括道床、扣件的钢轨碎弯分析模型,讨论了初始曲线线型及参数、升温幅度、轨道类型和线路阻力等对轨条碎弯幅值的影响.计算表明碎弯是无砟轨道无缝线路胀轨的表现,应严格控制初始弯曲和保证扣件横向阻力稳定,防止形成严重的轨条碎弯,影响行车安全.  相似文献   

11.
无缝线路稳定性分析有限元模型   总被引:8,自引:1,他引:7  
利用有限元法建立包含钢轨、扣件、轨枕和道床阻力为一体的轨道框架模型。研究在温度力作用下无缝线路的臌曲失稳问题。推导相应的数值计算公式并编制了计算程序。轨道框架模型由4种单元组成:用考虑钢轨非线性变形的平面梁单元代表钢轨;无几何尺寸的两结点弹簧单元模拟钢轨扣件;弹性基础上的普通平面梁单元表示轨枕;弹簧单元模拟道床的横向、纵向阻力,并考虑了道床阻力的非线性特性。运用该模型,分析道床横向阻力、轨枕失效、曲线半径和线路初始弯曲对无缝线路稳定性的影响,得到不同工况下钢轨横向位移-温度曲线、钢轨内应力分布及钢轨和轨枕的横向变形分布曲线。  相似文献   

12.
客运专线无砟轨道无缝线路锁定轨温确定方法的探讨   总被引:2,自引:0,他引:2  
根据客运专线无砟轨道无缝线路的结构和受力特点,采用现场试验、调研和动力仿真等方法对既有无砟轨道无缝线路锁定轨温的影响因素进行系统分析。研究结果表明:锁定轨温降低后,无缝线路温升幅度增大,温降幅度减小,将导致无缝线路施工和维护困难、钢轨发生碎弯几率增大等问题,影响高速列车运行的平稳性和安全性;在确定客运专线无砟轨道无缝线路锁定轨温时,除了要对无缝线路的强度、稳定性等进行常规检算外,还应结合车辆-轨道耦合动力学理论进行升温条件下钢轨碎弯变形的检算,从而确定合理的锁定轨温范围。为此建议对无砟轨道无缝线路碎弯变形的产生机理、不利影响及钢轨的合理断缝允许值进行静、动力学理论分析和试验研究。  相似文献   

13.
研究目的:当大跨度连续梁桥上铺设了CRTSⅠ型双块式无砟轨道结构之后,其梁轨相互作用机理更加复杂,原有的计算方法、计算模型及设计参数可能不再适用。针对既有研究的不足,本文基于有限元方法建立纵横垂向空间耦合模型,对道床板和底座板年温差、扣件纵向阻力、橡胶垫板弹性模量和隔离层摩擦系数等设计因素的影响规律进行计算与分析,为高速铁路长大桥梁CRTSⅠ型双块式无砟轨道无缝线路的设计参数的选择提供参考。研究结论:在进行设计与检算时,应根据不同地区的实际情况分别选取当地不同的年温差作为道床板和底座板的温差取值;通过在桥上采用小阻力扣件,可以明显降低钢轨最大纵向附加力及轨道结构的受力,但当扣件纵向阻力较小时,在长大桥梁的梁端处,扣件的爬行量较大,需要重点加以关注;在限位凹槽周围侧面应设置高弹橡胶垫板;道床板和底座板之间应尽量采用较小摩擦系数的隔离层。  相似文献   

14.
运用“荷载变形”关系,在考虑剪切变形的情况下进行无缝线路轨道稳定性分析,并推导出钢轨温度力计算公式。输入不同的轨道弯曲波长,找出最小的钢轨温度力,此值对应着最不利的变形波长l。此外,对是否考虑剪切力的2种情况进行对比。研究结果表明,剪切力对失稳极限温度压力的影响非常小,因此,在实际计算中可以忽略。  相似文献   

15.
简支梁桥上无缝道岔温度力与位移影响因素分析   总被引:13,自引:1,他引:12  
将道岔、梁和墩台视为一个系统,建立简支梁桥上无缝道岔的有限元模型。根据变分原理和“对号入座”法则建立有限元方程组。以铺设一组43号道岔的18跨32 m混凝土简支梁桥为例,研究影响简支梁桥上无缝道岔受力与位移的因素,如支座布置形式、轨温变化幅度、梁温差、扣件阻力、道床阻力、限位器间隙、岔枕刚度、限位器位置、梁跨长度和桥墩刚度等。计算结果表明,简支梁桥上无缝道岔在温度荷载作用下,钢轨温度力在限位器处和限位器前梁端处同时出现两个峰值;与桥上无缝线路相比,桥上无缝道岔桥墩处的最大受力显著增大;当梁与导轨同向伸缩时,岔区内钢轨位移较大;限位器应布置在梁跨中部;限位器间隙对桥上无缝道岔的受力与位移有双重影响;岔区内钢轨的受力与位移随桥墩刚度增大而减小;岔区内采用较大的扣件阻力和道床阻力,岔区外采用较小的扣件阻力和道床阻力,可以降低钢轨附加温度力。  相似文献   

16.
以某在建大跨度钢桁梁柔性拱桥为研究对象,运用梁轨相互作用原理,采用有限元方法建立桥上无缝线路计算模型,提出4种扣件铺设方案并分析其梁轨相互作用.结果表明:(1)对于明桥面无缝线路,桥梁温度跨度和扣件纵向阻力是影响无缝线路纵向力的决定性因素,大跨度钢桁梁柔性拱桥的纵梁体系对无缝线路纵向力的影响有限.(2)若不设置钢轨伸缩...  相似文献   

17.
初始不平顺与初始弯曲的叠加方式对无缝线路稳定性影响   总被引:1,自引:1,他引:0  
针对无缝线路稳定性方面的分析,研究线路初始不平顺与初始弹塑性弯曲之间的叠加方式具有重要意义。根据无缝线路稳定性有限元分析理论建立钢轨、扣件、轨枕和道床阻力为一体的轨道框架模型,对于桥上无缝线路由于梁端相对伸缩产生的线路不平顺,分析线路不平顺幅值位置以及各弦测法对应矢度最大值位置与初始弹塑性弯曲的叠加线型对无缝线路稳定性的影响。分析表明:梁端横向伸缩引起的钢轨变形会降低无缝线路的稳定性。建议对于存在初始不平顺的线路,首先采用4 m弦长对线路初始不平顺进行测量,得到最大的矢度对应的位置,然后与钢轨初始弹塑性弯曲最大处相对应进行叠加,最后进行求解,以此作为计算无缝线路稳定性最不利的工况。  相似文献   

18.
利用铁摩辛柯能量法推导无缝线路稳定性计算公式。将轨道视为一根具有一定横向刚度铺设在连续弹性介质(道床)的有限长梁。在临界温度压力作用下,具有初始不平顺的钢轨产生微小的横向变形,且处于微弯平衡状态。根据钢轨应变能增量与外力功的改变相等,直接运用铁摩辛柯能量法,推导出临界温度压力计算公式,编写相应的计算程序,计算具体算例,获得与统一公式计算接近的结果。将曲线半径、道床横向阻力、弹性弯曲矢度、塑性弯曲矢度等参数取不同值代入计算程序,得出各种参数变化对无缝线路稳定性的影响。并据此提出线路养护工作中保证稳定的重要原则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号