首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The parameters for travel time and travel cost are central in travel demand forecasting models. Since valuation of infrastructure investments requires prediction of travel demand for future evaluation years, inter-temporal variation of the travel time and travel cost parameters is a key issue in forecasting. Using two identical stated choice experiments conducted among Swedish drivers with an interval of 13 years, 1994 and 2007, this paper estimates the inter-temporal variation in travel time and cost parameters (under the assumption that the variance of the error components of the indirect utility function is equal across the two datasets). It is found that the travel time parameter has remained constant over time but that the travel cost parameter has declined in real terms. The trend decline in the cost parameter can be entirely explained by higher average income level in the 2007 sample compared to the 1994 sample. The results support the recommendation to keep the travel time parameter constant over time in forecast models, but to deflate the travel cost parameter with the forecasted income increase among travellers and the relevant income elasticity of the cost parameter. Evidence from this study further suggests that the inter-temporal and the cross-sectional income elasticities of the cost parameter are equal. The average elasticity is found to be ?0.8 to ?0.9 in the present sample of drivers, and the elasticity is found to increase with the real income level, both in the cross-section and over time.  相似文献   

2.
The problem of optimally locating fixed sensors on a traffic network infrastructure has been object of growing interest in the past few years. Sensor location decisions models differ from each other according to the type of sensors that are to be located and the objective that one would like to optimize. This paper surveys the existing contributions in the literature related to the problem of locating fixed sensors on the network to estimate travel times. The review consists of two parts: the first part reviews the methodological approaches for the optimal location of counting sensors on a freeway for travel time estimation; the second part focuses on the results related to the optimal location of Automatic Vehicle Identification (AVI) readers on the links of a network to get travel time information.  相似文献   

3.
Abstract

This paper investigates some features of non-linear travel time models for dynamic traffic assignment (DTA) that adopt traffic on the link as the sole determinant for the calculation of travel time and have explicit relationships between travel time and traffic on the link. Analytical proofs and numerical examples are provided to show first-in-first-out (FIFO) violation and the behaviour of decreasing outflow with increasing traffic in non-linear travel time models. It is analytically shown that any non-linear travel time model could violate FIFO in some circumstances, especially when inflow drops sharply, and some convex non-linear travel time models could show behaviour with outflow decreasing as traffic increases. It is also shown that the linear travel time model does not show these behaviours. A non-linear travel time model in general form was used for analytical proofs and several existing non-linear travel time models were adopted for numerical examples. Considering the features addressed in this study, non-linear travel time models seem to have limitations for use in DTA in practical terms and care should be taken when they are used for modelling time-varying transportation networks.  相似文献   

4.
Effective prediction of travel times is central to many advanced traveler information and transportation management systems. In this paper we propose a method to predict freeway travel times using a linear model in which the coefficients vary as smooth functions of the departure time. The method is straightforward to implement, computationally efficient and applicable to widely available freeway sensor data.We demonstrate the effectiveness of the proposed method by applying the method to two real-life loop detector data sets. The first data set––on I-880––is relatively small in scale, but very high in quality, containing information from probe vehicles and double loop detectors. On this data set the prediction error ranges from 5% for a trip leaving immediately to 10% for a trip leaving 30 min or more in the future. Having obtained encouraging results from the small data set, we move on to apply the method to a data set on a much larger spatial scale, from Caltrans District 12 in Los Angeles. On this data set, our errors range from about 8% at zero lag to 13% at a time lag of 30 min or more. We also investigate several extensions to the original method in the context of this larger data set.  相似文献   

5.
In the research area of dynamic traffic assignment, link travel times can be derived from link cumulative inflow and outflow curves which are generated by dynamic network loading. In this paper, the profiles of cumulative flows are piecewise linearized. Both the step function (SF) and linear interpolation (LI) are used to approximate cumulative flows over time. New formulations of the SF-type and LI-type link travel time models are developed. We prove that these two types of link travel time models ensure first-in-first-out (FIFO) and continuity of travel times with respect to flows, and have other desirable properties. Since the LI-type link travel time model does not satisfy the causality property, a modified LI-type (MLI-type) link travel time model is proposed in this paper. We prove that the MLI-type link travel time model ensures causality, strong FIFO and travel time continuity, and that the MLI-type link travel time function is strictly monotone under the condition that the travel time of each vehicle on a link is greater than the free flow travel time on that link. Numerical examples are set up to illustrate the properties and accuracy of the three models.  相似文献   

6.
7.
The value of travel time variance   总被引:1,自引:0,他引:1  
This paper considers the value of travel time variability under scheduling preferences that are defined in terms of linearly time varying utility rates associated with being at the origin and at the destination. The main result is a simple expression for the value of travel time variability that does not depend on the shape of the travel time distribution. The related measure of travel time variability is the variance of travel time. These conclusions apply equally to travellers who can freely choose departure time and to travellers who use a scheduled service with fixed headway. Depending on parameters, travellers may be risk averse or risk seeking and the value of travel time may increase or decrease in the mean travel time.  相似文献   

8.
This paper derives a measure of travel time variability for travellers equipped with scheduling preferences defined in terms of time-varying utility rates, and who choose departure time optimally. The corresponding value of travel time variability is a constant that depends only on preference parameters. The measure is unique in being additive with respect to independent parts of a trip. It has the variance of travel time as a special case. Extension is provided to the case of travellers who use a scheduled service with fixed headway.  相似文献   

9.
A common way to determine values of travel time and schedule delay is to estimate departure time choice models, using stated preference (SP) or revealed preference (RP) data. The latter are used less frequently, mainly because of the difficulties to collect the data required for the model estimation. One main requirement is knowledge of the (expected) travel times for both chosen and unchosen departure time alternatives. As the availability of such data is limited, most RP-based scheduling models only take into account travel times on trip segments rather than door-to-door travel times, or use very rough measures of door-to-door travel times. We show that ignoring the temporal and spatial variation of travel times, and, in particular, the correlation of travel times across links may lead to biased estimates of the value of time (VOT). To approximate door-to-door travel times for which no complete measurement is possible, we develop a method that relates travel times on links with continuous speed measurements to travel times on links where relatively infrequent GPS-based speed measurements are available. We use geographically weighted regression to estimate the location-specific relation between the speeds on these two types of links, which is then used for travel time prediction at different locations, days, and times of the day. This method is not only useful for the approximation of door-to-door travel times in departure time choice models, but is generally relevant for predicting travel times in situations where continuous speed measurements can be enriched with GPS data.  相似文献   

10.
A negative effect of congestion that tends to be overlooked is travel time uncertainty. Travel time uncertainty causes scheduling costs due to early or late arrival. The negative effects of travel time uncertainty can be reduced by providing travellers with travel time information, which improves their estimate of the expected travel time, thereby reducing scheduling costs. In order to assess the negative effects of uncertainty and the benefits of travel time information, this paper proposes a conceptual model of departure time choice under travel time uncertainty and information. The model is based on expected utility theory, and includes the variation in travel time, the quality of travel time information and travellers’ perception of the travel time. The model is illustrated by an application to the case of the A2 motorway between Beesd and Utrecht in the Netherlands.  相似文献   

11.
Travel demand models implicitly assume that people respond to changes in a continuous way. This is in contrast to the physical sciences, where discontinuous response is a common phenomenon and is embodied in such concepts as sub-critical and supercritical states.Recent studies have shown that responses to transport policies differ in degree and kind according to the nature and severity of the stimulus and the types of people affected. Response patterns may be categorised by the extent to which they involve adjustments to spatio-temporal or inter-personal linkages. This paper identifies four response domains, with a further distinction between permissive and forced changes.Most travel demand models are designed to operate within an independent, forced (and to a less extent independent permissive) domain and their forecasts become unreliable when responses lie outside that domain. Conversely, a model designed for a more complex domain is unnecessarily cumbersome where simpler responses apply. This paper describes the types of model which are appropriate for each domain and discusses how the effects of a policy may be assigned to the correct domain(s).  相似文献   

12.
This paper is concerned with the assessment of the goodness-of-fit of nonlinear models of the type currently being used in the development of the disaggregate, behavioral travel demand approach. These models are emerging as a potential new technique for many transportation planning problems, although much research is yet needed before they are sufficiently developed for operational use. In order to pursue the necessary research, and also for the later assessment of operational models, it is necessary to have adequate measures of the goodness-of-fit.The paper examines the adequacy of standard measures of goodness-of-fit as applied to any nonlinear estimating equation and they are found to be inappropriate and inadequate. A little-known statistic, called the correlation ratio, is then defined and derived, and is explored as a substitute for the standard measures. In both theoretical and empirical tests, the correlation ratio is found to be a significantly more useful and appropriate measure of goodness-of-fit.Some further properties of the correlation ratio are examined, and the ratio is found to possess some degree of arbitrariness when applied to typical travel demand models. This arbitrariness, however, only impairs the usefulness of the correlation ratio in the absolute assessment of a model, but not for the comparative assessment of two or more models. Finally, a number of research tasks, relating to the correlation ratio, are identified.  相似文献   

13.
Travel time on fixed route urban bus route is discussed. Given that the travel time is a function of three basic variables, Monte Carlo procedure is used to simulate trips during a specific time interval. Each variable is assumed to have a specific probability distribution with known or estimatable parameters. It is shown that this micro-computer simulation model can be used for examining the effects of traffic management schemes, number of stops and passenger demand on travel time, and subsequently fleet size and level of service.  相似文献   

14.
To improve the quality of travel time information provided to motorists, there is a need to move away from point forecasts of travel time. Specifically, techniques are needed which predict the range of travel times which motorists may experience. This paper focuses on travel time prediction on motorways and evaluates three models for predicting the travel time range in real time as well as up to 1 h ahead. The first model, termed lane by lane tracing, relies on speed data from each lane to replicate the trajectories of relatively slow and relatively fast vehicles on the basis of speed differences across the lanes. The second model is based on the relationship between mean travel time (estimated using a neural network model) and driver-to-driver travel time variability. The results provide insight into the relative merits of the proposed techniques and confirm that they provide a basis for reliable travel time range prediction in the short-term prediction context (up to 1 h ahead).  相似文献   

15.
In mode choice decision, travelers consider not only travel time but also reliability of its modes. In this paper, reliability was expressed in terms of standard deviation and maximum delay that were measured based on triangular distribution. In order to estimate value of time and value of reliability, the Multinomial and Nested Logit models were used. The analysis results revealed that reliability is an important factor affecting mode choice decisions. Elasticity is used to estimate the impacts of the different policies and system improvements for water transportation mode. Among these policies, decision maker can assess and select the best alternative by doing the benefit and cost analysis based on a new market share, the value of time, and the value of reliability. Finally, a set of promising policies and system improvement of the water transportation were proposed.  相似文献   

16.
The report examines the suggestion that the total amount of time, money or generalised cost spent on personal travel may be constant over time, in cross-section or under changes of travel costs or policies. Invariant expenditure of either time or money on travel is inconsistent with rational economic behaviour and with conventional transport modelling. A theoretical analysis concludes that generalised expenditure on travel might be invariant. Data from the National Travel Survey indicate that generalised expenditure is much the same in urban as in rural areas, despite the wide variation in modes available and distances to destinations. In comparisons of households at different income levels, generalised expenditure per person is almost directly proportional to gross income per person; in other words, consumption of “generalised time” is constant. Time series data from 1953 to 1976 are also examined and, though the data are poor, they indicate that generalised travel expenditure per person has increased over the years appreciably faster than has real income per person. Caution is therefore needed in using constant budget concepts in forecasting models.  相似文献   

17.
Travel time is an important performance measure for transportation systems, and dissemination of travel time information can help travelers make reliable travel decisions such as route choice or departure time. Since the traffic data collected in real time reflects the past or current conditions on the roadway, a predictive travel time methodology should be used to obtain the information to be disseminated. However, an important part of the literature either uses instantaneous travel time assumption, and sums the travel time of roadway segments at the starting time of the trip, or uses statistical forecasting algorithms to predict the future travel time. This study benefits from the available traffic flow fundamentals (e.g. shockwave analysis and bottleneck identification), and makes use of both historical and real time traffic information to provide travel time prediction. The methodological framework of this approach sequentially includes a bottleneck identification algorithm, clustering of traffic data in traffic regimes with similar characteristics, development of stochastic congestion maps for clustered data and an online congestion search algorithm, which combines historical data analysis and real-time data to predict experienced travel times at the starting time of the trip. The experimental results based on the loop detector data on Californian freeways indicate that the proposed method provides promising travel time predictions under varying traffic conditions.  相似文献   

18.
We study route choice behavior when travel time is uncertain. In this case, users choice depends both on expected travel time and travel time variability. We collected survey data in the Paris area and analyzed them using a method based on the ordered probit. This leads to an ordinal as well as to different cardinal measures of risk aversion. Such an approach is consistent with expected and with non-expected utility theory. Econometric estimates suggest that absolute risk aversion is constant and show that risk aversion is larger for transit users, blue collars and for business appointments.  相似文献   

19.
This paper addresses the problem of dynamic travel time (DTT) forecasting within highway traffic networks using speed measurements. Definitions, computational details and properties in the construction of DTT are provided. DTT is dynamically clustered using a K-means algorithm and then information on the level and the trend of the centroid of the clusters is used to devise a predictor computationally simple to be implemented. To take into account the lack of information in the cluster assignment for the new predicted values, a weighted average fusion based on a similarity measurement is proposed to combine the predictions of each model. The algorithm is deployed in a real time application and the performance is evaluated using real traffic data from the South Ring of the Grenoble city in France.  相似文献   

20.
Kato  Teppei  Uchida  Kenetsu  Lam  William H. K.  Sumalee  Agachai 《Transportation》2021,48(4):1639-1670
Transportation - Travel time reliability has been recognized as an important factor in cost–benefit analysis in a transportation network. To estimate the benefit and cost of travel time...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号