首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提升动力电池热管理系统的传热效果,研发了新型液冷动力电池模组。基于单体电池的最大发热功率测试结果,建立了新型液冷动力电池模组的冷却/加热系统试验平台,该平台由供液系统、冷却系统、加热系统、信号测量(传感器)与数据处理系统和电池管理系统等组成,可进行液冷动力电池模组传热特性的试验,为后续电池热管理系统的研发提供理论依据和技术支撑。  相似文献   

2.
为提升动力电池热管理系统的传热效果,研发了新型液冷动力电池模组。基于单体电池的最大发热功率测试结果,建立了新型液冷动力电池模组的冷却/加热系统试验平台,该平台由供液系统、冷却系统、加热系统、信号测量(传感器)与数据处理系统和电池管理系统等组成,可进行液冷动力电池模组传热特性的试验,为后续电池热管理系统的研发提供理论依据和技术支撑。  相似文献   

3.
动力电池是电动汽车的重要储能元件,但动力电池长时间使用会大量放热,若不及时散热,会直接影响动力电池的性能和安全性。本课题以一种磷酸铁锂LiFePO_4电池作为研究对象,对不同电池数的电池组的发热温度进行测量以及热效应规律进行研究,并结合对不同液冷系统冷却效果的分析,提出新型整体式冷板的设计思路并绘制出概念设计图。  相似文献   

4.
对某款电动客车用液冷动力电池系统进行高寒保温与加热试验研究,对比分析该液冷动力电池系统在不同保温方式下的保温性能。  相似文献   

5.
彭豪  孟庆国  尹骞 《时代汽车》2022,(2):104-105
针对动力电池包热管理中系统温度不均匀的问题,本文以某款液体循环冷暖一体化热控方式的电池包为研究对象,通过Ansys-fluent对其液冷回路进压降仿真,并优化液冷回路,最后通过实验验证优化前后系统的散热/加热性能,得出流量均匀性越好在液冷和液热时,电池包内电芯间的温差越小,散热以及加热效率更高.为后续热管理设计可将流道...  相似文献   

6.
随着电动汽车动力电池能量密度和快充倍率的提高,为了满足散热的要求,电池的液冷系统应用越来越广泛。作为液冷系统中的核心部件,液冷板的重要性日益凸显。文章利用了铝合金挤压型材中的空腔可以作为冷却液流道这一特点,设计了一种单元液冷板,单元液冷板之间通过搅拌摩擦焊进行拼接组成整体液冷板,整体液冷板进液管路和出液管路采用尼龙波纹管.通过对三种不同的管路布设方式进行系统压差和流量的对比分析,得出三级进液方式的压降和流量一致性较好的结论。  相似文献   

7.
动力电池热管理的目标不仅是保证电池模组在合适的温度范围内工作,而且要尽量保证模组内部温度均匀。液冷板是电池模组主动液体冷却系统的一个重要组成部分,此前对电池热管理的研究大多集中在液冷板流道结构及冷板排布方式对电池模组温度分布的影响,而忽略了冷却液的沿程温升对模组温度均匀性的影响。根据间壁式传热原理,提出采用液冷侧非线性强化传热的方式,以实现热源侧壁面温度均匀分布的均温液冷板结构。以某一动力电池模组液冷散热要求为例,构建了非线性传热强化液冷均温板模型,并进行了相应的数值模拟。结果表明,提出的均温液冷板能有效实现动力电池模组均温性要求。  相似文献   

8.
为实现电池包热管理系统低能耗和高效率散热的目的,文章通过流体动力学(CFD)仿真及实验对某插电式混合动力汽车(PHEV)乘用车电池包热管理系统进行优化研究。电池包热管理系统采用液冷散热,流场压力损失设计目标值为27kPa。初始方案中,流场压力损失实测值约为60 kPa,CFD仿真分析表明,液冷系统流场进出口是产生压力损失的主要部件;采用增大进出口管径的方法对液冷系统进行优化,仿真和实验结果表明,优化后的液冷系统压力损失减小至26 kPa左右;液冷系统流场优化后,对电池包散热特性进行仿真和实验分析,结果表明,在67.6 kW工况下电池包最高温度为53.2℃,低于目标值55℃。综合分析可以得出结论,优化后的电池包液冷系统各项指标达到目标状态。  相似文献   

9.
针对锂动力电池在放电过程中的散热问题,建立基于某三元锂电池模组的生热模型,仿真分析并试验探究了电池模组在不同放电倍率下的发热情况。在验证模组生热模型正确的前提下,结合模组发热具体情况,设计U型液冷管道并建立电池模组的液冷模型,比较了不同参数的冷却液介质和不同温度的冷却液对锂电池组冷却性能的影响。研究表明:设计的U型管道能够满足电池组冷却散热需求,导热系数大且温度较低的冷却介质散热效果更好。  相似文献   

10.
液冷方式是当前纯电动汽车锂离子电池最主流的散热方式之一,具有散热效率高、能耗小的优点。采用仿真分析与多目标优化相结合的方法,重点研究了冷却板结构的优化设计。介绍了一种新型双层分形微通道液冷板,并进行了优化仿真设计分析和多目标优化分析。提高冷却液的流量和降低入口温度可以大幅降低液冷板的最高温度和温差,冷却板结构优化后的压力差和冷却泵能量 消耗都有所下降,提高了液冷板的散热效果,延长了锂离子电池的使用寿命,保障了纯电动汽车在使用过程中的安全可靠。  相似文献   

11.
根据某款三元动力电池的热特性,结合整车现有的空调和正温度系数加热元件(PTC)采暖系统,设计了针对该三元电池温度控制的液冷液热系统。在确保动力电池在高温条件下能正常工作的同时,解决了该三元电池在低温下无法充电或充电时间过长的问题。  相似文献   

12.
针对混合动力商用客车设计一种锂离子电池包液冷系统,通过电池发热功率和液冷板结构计算出液冷系统的压力以及模组之间的温差。选取压缩机、节流元件、换热器、蒸发器、泵、膨胀水壶等器件组成液冷系统,最后分别在常温(25℃)和高温(40℃)环境下进行高倍率充电(3C和4C)+市区工况运行,模拟混合动力商用车的运行路况,测试其循环温升。结果表明液冷效果明显,可以将动力电池系统温度控制在正常的工作范围内。  相似文献   

13.
不同工况下电动汽车冷板液冷系统散热性能试验研究   总被引:1,自引:0,他引:1  
对采用冷板液冷方式的电动汽车液冷系统进行了试验研究,分析不同水冷板流径、进液流量和环境温度对其散热性能的影响。结果表明:随着进液流量增加,液冷系统的散热性能呈现先提高后降低的趋势;不论何种流径方案,都有一个最佳进液流量(单进单出为350L/h,双进双出为450L/h),使最高温升和内部最大温差都达到最小;采用双进双出流径方案时,随着环境温度的升高,最高温升减小,而内部最大温差增大;与单进单出流径相比,双进双出流径液冷系统的电池模块最高温升和内部最大温差均明显降低,散热效率得到提高;在环境温度不高于35℃,采用350~450L/h的进液流量,双进双出流径方案的散热性能完全满足设计要求。  相似文献   

14.
针对传统液冷电池包内电池组散热不充分及表面温度一致性较差的问题,本文设计了一种基于风冷和液冷耦合 冷却策略的新型电池包结构,利用Catia软件建立三维模型并运用Fluent软件进行仿真,研究结果表明,相较于单一液冷 结构在2 C和2.5 C放电倍率下存在电池组过热问题,风冷液冷耦合的冷却结构在不同放电倍率下将最高温度和最大温差 分别控制在45 ℃和5 ℃以内。探究了不同流体进口速度对电池组散热的影响,并选取风速5 m/s,冷却液流速0.5 m/s的 最佳配合,在此基础上对流道进行针对性的优化,优化后电池组在同一工况下最高温度从27.95 ℃下降至26.82 ℃。这种 新型结构将为后续的电池的热管理设计提供新思路。  相似文献   

15.
通过液冷动力电池与冷却机组组成联调系统,根据实际使用需求,对出液温度、耗电量、电池温度等参数进行测试研究,并提出平衡机组能耗与车辆续驶里程的温度参数推荐值。  相似文献   

16.
阐述客车动力电池热管理系统液冷循环的设计要求,分析在不同电池数量及布置方式下如何设计管路连接来满足系统循环流量和排气需要.  相似文献   

17.
液冷散热是目前电动汽车锂电池组主流的散热方法,可保证电池在适宜的温度范围内安全工作。针对一款冲压式双流道液冷板进行设计与分析,建立了液冷板流体域计算流体动力学分析模型,分析了模型的网格无关性,讨论了减少液冷板压力损失的方法;以质量流量均匀性为目标,利用多场耦合集成优化软件,对液冷板内部流道宽度进行自动优化;建立了锂电池液冷板的流固耦合传热模型,校核了电池顶面最高温度及最大温差。  相似文献   

18.
为提高锂离子动力电池的工作温度区间,保障电池的动力输出,需要在电池系统端进行有效的热管理设计。文章主要通过CFD热仿真技术分析了在不同实验工况下电池单体内部生成热、模组在加热及散热时的温度场分布,并通过对比分析不同散热结构的仿真结果,来优化电池内部散热结构的设计。整车的冷却实验验证结果也表明该设计可以有效地保障电池工作合理的温度范围内。  相似文献   

19.
为提高动力电池液冷系统和加热系统的冷却和加热效果与安全性,本文中基于理论分析和数值模拟的方法设计了一种新型冷热集成系统。其中,液冷板采用独立式盘绕铝管嵌入铝材基板结构,并设计了流量分区以适应电池模组差异化的冷却需求,而低温条件下电池模组的快速加热,则通过集成PTC热敏电阻模块来实现。实验结果表明,在环境温度为40℃条件下进行快速充电和大功率放电循环时,电池包4个分区的最高温度均低于45℃,且各分区温差在1℃左右;在环境温度为-20℃时,内部加热方案可快速将电池包温度由-20℃上升至可大电流充电的温度,且其能耗比外部循环加热方式降低41.4%。  相似文献   

20.
为提升电池热管理系统(BTMS)散热效果,采用计算流体力学(CFD)和基于快速非支配排序遗传算法(NGSA-II)的多目标优化相结合的方法设计优化了一种新型液冷板模型。通过电池实验,得到不同放电倍率下单体电池产热量。以通道夹角、通道宽度、冷却液的质量流量为设计变量,平均温度、温度标准差和压降为目标函数,采用拉丁超立方体抽样(LHS)方法,在设计空间中选取了35个设计点,利用响应面近似模型(RSM)拟合出目标函数的表达式。结果表明:在5C放电倍率下,优化后液冷板的散热性能得到有效提升,与初始模型相比,液冷板的平均温度和温度标准差分别下降了11%、51.2%,压降仅增加了3.3Pa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号