共查询到20条相似文献,搜索用时 15 毫秒
1.
The commonly used photochemical air quality model, the Urban Airshed Model (UAM), requires emission estimates with grid-based, hourly resolution. In contrast, travel demand models, used to simulate the travel activity model inputs for the transportation-related emissions estimation, typically only provide traffic volumes for a specific travel period (e.g. the a.m. and p.m. peak periods). A few transportation agencies have developed procedures to allocate period-based travel demand data into hourly emission inventories for regional grid cells. Because there was no theoretical framework for disaggregating period-based volumes to hourly volumes, application of these procedures frequently relied upon a single hypothetical hourly distribution of travel volumes. This study presents a new theoretical modeling framework that integrates traffic count data and travel demand model link volume estimates to derive intra-period hourly volume estimates by trip purpose. We propose a new interpretation of the model coefficients and define hourly allocation factors by trip purpose. These allocation factors can be used to disaggregate the travel demand model ‘period-based’ simulation volumes into hourly resolution, thereby improving grid-based, hourly emission estimates in the UAM. 相似文献
2.
This paper demonstrates, tests and shows the value of activity-based travel demand models and household sample enumeration forecasting techniques in evaluating the transportation and air quality impacts of travel demand management strategies. Using data from the Portland, Oregon metropolitan area, three transportation policies were evaluated both individually and in combination: transit improvements, pricing, and telecommunications. The activity-based models used in this testing represents a significant improvement to today's "four-step" sequential model systems by providing a deeper insight into the individual decision making process in response to transportation policies. A wider range of impacts is predicted, and indirect effects as well as synergistic effects of such policies are taken into consideration. These models are capable of providing the information needed to improve the linkage of transportation models with emissions and air quality analysis methodologies by improving the prediction of variables that are important to accurately estimating emissions and air quality impacts of transportation actions. 相似文献
3.
Abstract This paper describes one of the first known attempts at integrating a dynamic and disaggregated land-use model with a traffic microsimulator and compares its predictions of land use to those from an integration of the same land-use model with a more traditional four-step travel demand model. For our study area of Chittenden County, Vermont, we used a 40-year simulation beginning in 1990. Predicted differences in residential units between models for 2030 broken down by town correlated significantly with predicted differences in accessibility. The two towns with the greatest predicted differences in land use and accessibility are also the towns that currently have the most severe traffic bottlenecks and poorest route redundancy. Our results suggest that this particular integration of a microsimulator with a disaggregated land-use model is technically feasible, but that in the context of an isolated, small metropolitan area, the differences in predicted land use are small. 相似文献
4.
The aim of this study was to investigate whether a temporary structural change would induce a lasting increase in drivers' public transport use. An experiment targeting 43 drivers was carried out, in which a one-month free bus ticket was given to 23 drivers in an experimental group but not to 20 drivers in a control group. Attitudes toward, habits of, and frequency of using automobile and bus were measured immediately before, immediately after, and one month after the one-month long intervention. The results showed that attitudes toward bus were more positive and that the frequency of bus use increased, whereas the habits of using automobile decreased from before the intervention, even one month after the intervention period. Furthermore, the increase in habitual bus use had the largest effect on the increase in the frequency of bus use. The results suggest that a temporary structural change, such as offering auto drivers a temporary free bus ticket, may be an important travel demand management tool for converting automotive travel demand to public-transport travel demand. 相似文献
5.
In this paper, the concept of reserve capacity has been extended to zone level to measure the land-use development potentiality of each trip generation zone. Bi-level programing models are proposed to determine the signal setting of individual intersections for maximizing possible increase in total travel demand and the corresponding reserve capacity for each zone. The change of the origin–destination pattern with the variation of upper level decision variables is presented through the combined distribution/assignment model under user equilibrium conditions. Both singly constrained and doubly constrained combined models are considered for different trip purposes and data information. Furthermore, we have introduced the continuous network design problem by increasing road capacity and examined its effect on the land-use development potentiality of trip generation zone. A numerical example is presented to illustrate the application of the models and how a genetic algorithm is applied to solve the problem. 相似文献
6.
Land use and transportation mutually affect each other. Unfortunately, most transportation decision making procedures assume that public agencies cannot shape future land use patterns, and that past land use practices unswervingly determine future conditions. In A Tale of Two Cities, the author surveys the correlations between land use policies and travel behavior in two Oregon cities (Portland and Hillsboro).Building on successes the City of Portland has achieved in reducing reliance on the automobile, the author outlines a recent project by 1000 Friends of Oregon, titled Making the Land Use, Transportation, Air Quality Connection (LUTRAQ). According to the author, the purpose of LUTRAQ is to replicate Portland's approach in a more suburban context. Specifically, LUTRAQ is attempting to develop a realistic land use/transportation/demand management alternative to a proposed new bypass freeway and to accurately measure that alternative for its effects on travel demand, land use, air quality, climate change, and other indices. Although LUTRAQ is a project in progress, the author provides preliminary information that suggests the alternative successfully reduces demand for single occupancy automobile travel. 相似文献
7.
Demographic, socioeconomic, seasonal, and scheduling factors affect the allocation of time to various activities. This paper examines those variables through exploration of the 1990 Nationwide Personal Transportation Survey, which has been inverted to track activity duration. Two key issues are considered. First, how much can activity duration and frequency explain travel duration? The analysis shows activity duration has positive and significant effects on travel duration, supporting recent arguments in favor of activity based models. Second, which recent trend is the main culprit in the rise in travel: suburbanization, rising personal incomes, or female labor force participation? This paper examines the share of time within a 24-hour budget allocated to several primary activities: home, work, shop, and other. The data suggest that income and location have modest effects on time allocation compared with the loss of discretionary time due to working. 相似文献
8.
Pedestrian travel offers a wide range of benefits to both individuals and society. Planners and public health officials alike
have been promoting policies that improve the quality of the built environment for pedestrians: mixed land uses, interconnected
street networks, sidewalks and other facilities. Whether such policies will prove effective remains open to debate. Two issues
in particular need further attention. First, the impact of the built environment on pedestrian behavior may depend on the
purpose of the trip, whether for utilitarian or recreational purposes. Second, the connection between the built environment
and pedestrian behavior may be more a matter of residential location choice than of travel choice. This study aims to provide
new evidence on both questions. Using 1368 respondents to a 1995 survey conducted in six neighborhoods in Austin, TX, two
separate negative binomial models were estimated for the frequencies of strolling trips and pedestrian shopping trips within
neighborhoods. We found that although residential self-selection impacts both types of trips, it is the most important factor
explaining walking to a destination (i.e. for shopping). After accounting for self-selection, neighborhood characteristics
(especially perceptions of these characteristics) impact strolling frequency, while characteristics of local commercial areas
are important in facilitating shopping trips. 相似文献
9.
This paper focuses on comparing the frameworks and projections from four global transportation models with considerable technology details. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in part to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2 °C/450 ppm target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as gaps of current policy goals, additional policy targets needed, regional vs. global reductions; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning historical data, and comparing input assumptions and results of policy analysis and modeling insights. 相似文献
10.
The persistence of environmental problems in urban areas and the prospect of increasing congestion have precipitated a variety of new policies in the USA, with concomitant analytical and modeling requirements for transportation planning. This paper introduces the Sequenced Activity-Mobility Simulator (SAMS), a dynamic and integrated microsimulation forecasting system for transportation, land use and air quality, designed to overcome the deficiencies of conventional four-step travel demand forecasting systems. The proposed SAMS framework represents a departure from many of the conventional paradigms in travel demand forecasting. In particular, it aims at replicating the adaptative dynamics underlying transportation phenomena; explicitly incorporates the time-of-day dimension; represents human behavior based on the satisficing, as opposed to optimizing, principle; and endogenously forecasts socio-demographic, land use, vehicle fleet mix, and other variables that have traditionally been projected externally to be input into the forecasting process. 相似文献
11.
The amount of pollution emitted by a vehicle depends on its load and speed, among other factors. This paper presents the Pollution-Routing Problem (PRP), an extension of the classical Vehicle Routing Problem (VRP) with a broader and more comprehensive objective function that accounts not just for the travel distance, but also for the amount of greenhouse emissions, fuel, travel times and their costs. Mathematical models are described for the PRP with or without time windows and computational experiments are performed on realistic instances. The paper sheds light on the tradeoffs between various parameters such as vehicle load, speed and total cost, and offers insight on economies of ‘environmental-friendly’ vehicle routing. The results suggest that, contrary to the VRP, the PRP is significantly more difficult to solve to optimality but has the potential of yielding savings in total cost. 相似文献
12.
This paper examines the relationships among different transportation modes, and between transportation and telecommunications, by applying the structural equation modeling (SEM) technique. For this purpose, we collected and compiled time series data on national travel demand, and socioeconomic and telecommunications conditions in Taiwan, and built national travel demand models using SEM. The estimation results show that the relationship between telecommunications and transportation demand (either car ownership or public transportation) is more complementary than substitutional. Moreover, car ownership is a type of inelastic necessity good, and its relationship with public transportation is more substitutional than complementary. Finally, among the three public transportation modes – rail, bus and domestic air – it is found that air is weakest in terms of competitive power. From the viewpoint of long-term forecasting trends, the bus holds its competitive power in comparison with other public transportation modes and would not be replaced in the future. 相似文献
13.
Speed variations are considered as an alternative for reducing fuel consumption during the use phase of passenger cars. It explores vehicle engine operating zones with lower fuel consumption, thus making possible a reduction in fuel consumption when compared to constant speed operation. In this paper, we present an evaluation of two conditions of speed variations: 50–70 km/h and 90–110 km/h using numerical simulations and controlled tests. The controlled tests performed on a test track by a professional pilot show that a reduction in fuel consumption is achievable with a conventional gasoline passenger car, with no adaptations for realizing speed variations. Numerical simulations based on a backward quasi-static powertrain model are used to evaluate the potential of speed variations for reducing fuel consumption in other speed variation conditions. When deceleration is performed with gear in neutral position, simulations show that speed variations are always correlated to a lower fuel consumption. This was suspected through previous numerical tests or evaluation on test bench but not in controlled tests conditions. 相似文献
14.
Increasing concerns on supply chain sustainability have given birth to the concept of closed-loop supply chain. Closed-loop supply chains include the return processes besides forward flows to recover the value from the customers or end-users. Vendor Managed Inventory (VMI) systems ensure collaborative relationships between a vendor and a set of customers. In such systems, the vendor takes on the responsibility of product deliveries and inventory management at customers. Product deliveries also include reverse flows of returnable transport items. The execution of the VMI policy requires vendor to deal with a Closed-loop Inventory Routing Problem (CIRP) consisting of its own forward and backward routing decisions, and inventory decisions of customers. In CIRP literature, traditional assumptions of disregarding reverse logistic operations, knowing beforehand distribution costs between nodes and customers demand, and managing single product restrict the usage of the proposed models in current food logistics systems. From this point of view, the aim of this research is to enhance the traditional models for the CIRP to make them more useful for the decision makers in closed-loop supply chains. Therefore, we propose a probabilistic mixed-integer linear programming model for the CIRP that accounts for forward and reverse logistics operations, explicit fuel consumption, demand uncertainty and multiple products. A case study on the distribution operations of a soft drink company shows the applicability of the model to a real-life problem. The results suggest that the proposed model can achieve significant savings in total cost and thus offers better support to decision makers. 相似文献
15.
Drones are one of the most intensively studied technologies in logistics in recent years. They combine technological features matching current trends in transport industry and society like autonomy, flexibility, and agility. Among the various concepts for using drones in logistics, parcel delivery is one of the most popular application scenarios. Companies like Amazon test drones particularly for last-mile delivery intending to achieve both reducing total cost and increasing customer satisfaction by fast deliveries. As drones are electric vehicles, they are also often claimed to be an eco-friendly mean of transportation.In this paper an energy consumption model for drones is proposed to describe the energy demand for drone deliveries depending on environmental conditions and the flight pattern. The model is used to simulate the energy demand of a stationary parcel delivery system which serves a set customers from a depot. The energy consumed by drones is compared to the energy demand of Diesel trucks and electric trucks serving the same customers from the same depot.The results indicate that switching to a solely drone-based parcel delivery system is not worthwhile from an energetic perspective in most scenarios. A stationary drone-based parcel delivery system requires more energy than a truck-based parcel delivery system particularly in urban areas where customer density is high and truck tours are comparatively short. In rather rural settings with long distances between customers, a drone-based parcel delivery system creates an energy demand comparable to a parcel delivery system with electric trucks provided environmental conditions are moderate. 相似文献
16.
This study provides a comprehensive comparison of well-to-wheel (WTW) energy demand, WTW GHG emissions, and costs for conventional ICE and alternative passenger car powertrains, including full electric, hybrid, and fuel cell powertrains. Vehicle production, operation, maintenance, and disposal are considered, along with a range of hydrogen production processes, electricity mixes, ICE fuels, and battery types. Results are determined based on a reference vehicle, powertrain efficiencies, life cycle inventory data, and cost estimations. Powertrain performance is measured against a gasoline ICE vehicle. Energy carrier and battery production are found to be the largest contributors to WTW energy demand, GHG emissions, and costs; however, electric powertrain performance is highly sensitive to battery specific energy. ICE and full hybrid vehicles using alternative fuels to gasoline, and fuel cell vehicles using natural gas hydrogen production pathways, are the only powertrains which demonstrate reductions in all three evaluation categories simultaneously (i.e., WTW energy demand, emissions, and costs). Overall, however, WTW emission reductions depend more on the energy carrier production pathway than on the powertrain; hence, alternative energy carriers to gasoline for an ICE-based fleet (including hybrids) should be emphasized from a policy perspective in the short-term. This will ease the transition towards a low-emission fleet in Switzerland. 相似文献
17.
Understanding the patterns of automobile travel demand can help formulate policies to alleviate congestion and pollution. This study focuses on the influence of land use and household properties on automobile travel demand. Car license plate recognition (CLPR) data, point-of-interest (POI) data, and housing information data were utilized to obtain automobile travel demand along with the land use and household properties. A geographically and temporally weighted regression (GTWR) model was adopted to deal with both the spatial and temporal heterogeneity of travel demand. The spatial-temporal patterns of GTWR coefficients were analyzed. Also, comparative analyses were carried out between automobile and total person travel demand, and among travel demand of taxis, heavily-used private cars, and total automobiles. The results show that: (I) The GTWR model has significantly higher accuracy compared with the Ordinary Least Square (OLS) model and the Geographically Weighted Regression (GWR) model, which means the GTWR model can measure both the spatial and temporal heterogeneity with high precision; (II) The influence of built environment and household properties on automobile travel demand varies with space and time. In particular, the temporal distribution of regression coefficients shows significant peak phenomenon; and (III) Comparative analyses indicate that residents’ preference for automobiles over other travel modes varies with their travel purpose and destination. The above findings indicate that the proposed method can not only model spatial-temporal heterogeneous travel demand, but also provide a way to analyze the patterns of automobile travel demand. 相似文献
18.
Intercity passenger trips constitute a significant source of energy consumption, greenhouse gas emissions, and criteria pollutant emissions. The most commonly used city-to-city modes in the United States include aircraft, intercity bus, and automobile. This study applies state-of-the-practice models to assess life-cycle fuel consumption and pollutant emissions for intercity trips via aircraft, intercity bus, and automobile. The analyses compare the fuel and emissions impacts of different travel mode scenarios for intercity trips ranging from 200 to 1600 km. Because these modes operate differently with respect to engine technology, fuel type, and vehicle capacity, the modeling techniques and modeling boundaries vary significantly across modes. For aviation systems, much of the energy and emissions are associated with auxiliary equipment activities, infrastructure power supply, and terminal activities, in addition to the vehicle operations between origin/destination. Furthermore, one should not ignore the embodied energy and initial emissions from the manufacturing of the vehicles, and the construction of airports, bus stations, highways and parking lots. Passenger loading factors and travel distances also significantly influence fuel and emissions results on a per-traveler basis. The results show intercity bus is generally the most fuel-efficient mode and produced the lowest per-passenger-trip emissions for the entire range of trip distances examined. Aviation is not a fuel-efficient mode for short trips (<500 km), primarily due to the large energy impacts associated with takeoff and landing, and to some extent from the emissions of ground support equipment associated with any trip distance. However, aviation is more energy efficient and produces less emissions per-passenger-trip than low-occupancy automobiles for trip distances longer than 700–800 km. This study will help inform policy makers and transportation system operators about how differently each intercity system perform across all activities, and provides a basis for future policies designed to encourage mode shifts by range of service. The estimation procedures used in this study can serve as a reference for future analyses of transportation scenarios. 相似文献
19.
Transportation - Suburban development in the US is widely criticized for its contribution to automobile dependence and its consequences. Not surprisingly, then, a return to more urban-style... 相似文献
20.
The primary shortcoming of traditional four-step models is that they cannot capture derived travel demand behaviors. However, travel demand modeling (TDM) is an essential input for urban transportation planning. TDM needs to be highly precise and accurate by integrating the accurate base year estimation along with suitable alternatives. Currently, activity-based models (ABMs) have been developed mostly for large metropolitan planning organizations (MPO), whereas smaller/medium-sized MPOs typically lack these models. The main reason for this disparity in ABM development is the complexity of the models and the cost and data requirements needed. We posit however that smaller MPOs could develop ABMs from traditional travel surveys. Therefore, the specific aim of this paper is to develop a probabilistic home-based destination activity trip generation model considering travel time behavior. Results show that the developed model can significantly capture the actual number of trip generations. 相似文献
|