首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Mechanical systems with nonlinear characteristics can show a complex dynamic behavior that should be taken into account when analysing dynamic performance and reliability. The dynamic behavior of the main suspension in a three-piece freight car bogie with constant friction damping is considered in this work. The aim is to investigate the vertical behavior of a specific suspension design due to different driving conditions, weather and wear of the friction wedges. A variation in weather and wear is represented by different friction configurations in the model of the suspension. Models of different levels of detail that are based on experimental data on existing designs are developed. It is found that the suspension performance is very sensitive to variations of the friction configuration and this indicates a possible presence of nonlinear dynamic phenomena at in service like conditions.  相似文献   

2.
This paper presents a novel nonlinear dynamic model of a multi-axle steering vehicle to estimate the lateral wear amount of tires. Firstly, a 3DOF nonlinear vehicle dynamic model is developed, including dynamic models of the hydropneumatic suspension, tire, steering system and toe angle. The tire lateral wear model is then built and integrated into the developed vehicle model. Based on the comparison of experimental and simulation results, the nonlinear model is proved to be better than a linear model for the tire wear calculation. In addition, the effects of different initial toe angles on tire wear are analyzed. As simulation results shown, the impact of the dynamic toe angle on the tire wear is significant. The tire wear amount will be much larger than that caused by normal wear if the initial toe angle increases to 1° - 1.5°. The results also suggest that the proposed nonlinear model is of great importance in the design and optimazation of vehicle parameters in order to reduce the tire wear.  相似文献   

3.
This paper investigates the influence of ball-screw inerter nonlinearities on the vibration isolation performance of the vehicle suspension system. That is achieved by building a nonlinear mechanics model of the ball-screw inerter with friction in ball-screw assembly and elastic effect of screw. The parameters of the nonlinear mechanics model are identified using recursive least squares algorithm based on test data. Then, the nonlinear ball-screw inerter is applied to vehicle suspension analysis of the half-car model with three passive suspension layouts. The performance of the vehicle suspension system with the nonlinear ball-screw inerter is compared with that with the linear inerter. It is demonstrated from the results that the vibration isolation performance of the vehicle suspension system is slightly influenced by considering the ball-screw inerter nonlinearities in general. The influence of the ball-screw inerter nonlinearities on every performance indicator for different suspension layouts is discussed finally.  相似文献   

4.
This paper presents the locomotive traction controller performance with respect to the track wear under different operation conditions. In particular, an investigation into the dynamic response of a locomotive under changing wheel–rail friction conditions is performed with an aim to determine the effect of controller setting on track wear. Simulation using a full-scale longitudinal–vertical locomotive dynamic model shows that the appropriately designed creep threshold, controller, settings can effectively maintain a high tractive effort while avoiding excessive rail damage due to wear, especially during acceleration under low speed.  相似文献   

5.
工程车辆非线性橡胶悬架动力学建模与优化   总被引:2,自引:0,他引:2  
以AD250铰接式自卸车的非线性变刚度橡胶悬架为研究对象,应用模态综合法和多柔体系统动力学理论,并通过整车试验建立了整车刚柔耦合动力学模型。以行驶平顺性和操纵稳定性为优化目标,采用序列二次规划法,对不同载荷、不同等级路面和不同车速下的悬架特性参数进行优化,得到了不同工况下的最优悬架特性参数。通过最小二乘法拟合得到了橡胶悬架刚度参数的理想非线性特性曲线。仿真结果表明,优化后的橡胶悬架系统能使车辆保持良好的行驶平顺性。  相似文献   

6.
In the first part of this study, the potential performance benefits of fluidically coupled passive suspensions were demonstrated through analyses of suspension properties, design flexibility and feasibility. In this second part of the study, the dynamic responses of a vehicle equipped with different configurations of fluidically coupled hydro-pneumatic suspension systems are investigated for more comprehensive assessments of the coupled suspension concepts. A generalised 14 degree-of-freedom nonlinear vehicle model is developed and validated to evaluate vehicle ride and handling dynamic responses and suspension anti-roll and anti-pitch characteristics under various road excitations and steering/braking manoeuvres. The dynamic responses of the vehicle model with the coupled suspension are compared with those of the unconnected suspensions to demonstrate the performance potential of the fluidic couplings. The dynamic responses together with the suspension properties suggest that the full-vehicle-coupled hydro-pneumatic suspension could offer considerable potential in realising enhanced ride and handling performance, as well as improved anti-roll and anti-pitch properties in a very flexible and energy-saving manner.  相似文献   

7.
Nonlinear suspension controllers have the potential to achieve superior performance compared to their linear counterparts. A nonlinear controller can focus on maximizing passenger comfort when the suspension deflection is small compared to its structural limit. As the deflection limit is approached, the controller can shift focus to prevent the suspension deflection from exceeding this limit. This results in superior ride quality over the range of road surfaces, as well as reduced wear of suspension components. This paper presents a novel approach to the design of such nonlinear controllers, based on linear parameter-varying control techniques. Parameter-dependent weighting functions are used to design active suspensions that stiffen as the suspension limits are reached. The controllers use only suspension deflection as a feedback signal. The proposed framework easily extends to the more general case where all the three main performance metrics, i.e., passenger comfort, suspension travel and road holding are considered, and to the design of road adaptive suspensions.  相似文献   

8.
Nonlinear suspension controllers have the potential to achieve superior performance compared to their linear counterparts. A nonlinear controller can focus on maximizing passenger comfort when the suspension deflection is small compared to its structural limit. As the deflection limit is approached, the controller can shift focus to prevent the suspension deflection from exceeding this limit. This results in superior ride quality over the range of road surfaces, as well as reduced wear of suspension components. This paper presents a novel approach to the design of such nonlinear controllers, based on linear parameter-varying control techniques. Parameter-dependent weighting functions are used to design active suspensions that stiffen as the suspension limits are reached. The controllers use only suspension deflection as a feedback signal. The proposed framework easily extends to the more general case where all the three main performance metrics, i.e., passenger comfort, suspension travel and road holding are considered, and to the design of road adaptive suspensions.  相似文献   

9.
Trains crashing onto heavy road vehicles stuck across rail tracks are more likely occurrences at level crossings due to ongoing increase in the registration of heavy vehicles and these long heavy vehicles getting caught in traffic after partly crossing the boom gate; these incidents lead to significant financial losses and societal costs. This paper presents an investigation of the dynamic responses of trains under frontal collision on road trucks obliquely stuck on rail tracks at level crossings. This study builds a nonlinear three-dimensional multi-body dynamic model of a passenger train colliding with an obliquely stuck road truck on a ballasted track. The model is first benchmarked against several train dynamics packages and its predictions of the dynamic response and derailment potential are shown rational. A geometry-based derailment assessment criterion is applied to evaluate the derailment behaviour of the frontal obliquely impacted trains under different conditions. Sensitivities of several key influencing parameters, such as the train impact speed, the truck mass, the friction at truck tyres, the train–truck impact angle, the contact friction at the collision zone, the wheel/rail friction and the train suspension are reported.  相似文献   

10.
Dynamic performance, safety and maintenance costs of railway vehicles strongly depend on wheelset dynamics and particularly on the design of wheelset profile. This paper considers the effect of worn wheel profile on vehicle dynamics and the trend of wear in the wheels as a result of the vehicle movements. ADAMS/RAIL is used to build a multi-body system model of the vehicle. The track model is also configured as an elastic body. Measured new and worn wheel profiles are used to provide boundary conditions for the wheel/rail contacts. The fleet velocity profile taken during its normal braking is also used for the simulation. Wear numbers are calculated for different sets of wheels and the results compared with each other. Outcome of this research can be used for modifying dynamic performance of the vehicle, improving its suspension elements and increasing ride quality. It can also be further processed to reach to a modified wheel profile suitable for the fleet/track combination and for improved maintenance of the wheels. A major advantage of the computer models in this paper is the insertion of the wheel surface properties into the boundary conditions for dynamic modelling of the fleet. This is performed by regularly measuring the worn wheel profiles during their service life and by the calculation of the wear rate for individual wheels.  相似文献   

11.
汽车用碳纤维复合摩阻材料的摩擦磨损特性研究   总被引:1,自引:0,他引:1  
在采用正交设计优化碳纤维复合摩阻材料的基础上,针对汽车制动器衬片的实际工况,研究了碳纤维复合摩阻材料的摩擦磨损特性及磨损机制分析了碳纤维含量、强度及表面状态等对磨损机制的影响。研究结果表明,碳纤维复合摩阻材料的磨损性能、工作寿命及抗热衰退性能均明显高于传统的石棉摩阻材料。  相似文献   

12.
A planar suspension system (PSS) is a novel automobile suspension system in which an individual spring–damper strut is implemented in both the vertical and longitudinal directions, respectively. The wheels in a vehicle with such a suspension system can move back and forth relative to the chassis. When a PSS vehicle experiences asymmetric road excitations, the relative longitudinal motion of wheels with respect to the chassis in two sides of the same axle are not identical, and thus the two wheels at one axle will not be aligned in the same axis. The total dynamic responses, including those of the bounce, pitch and the roll of the PSS vehicle, to the asymmetric road excitation may exhibit different characteristics from those of a conventional vehicle. This paper presents an investigation into the comprehensive dynamic behaviour of a vehicle with the PSS, in such a road condition, on both the straight and curved roads. The study was carried out using an 18 DOF full-car model incorporating a radial-spring tyre–ground contact model and a 2D tyre–ground dynamic friction model. Results demonstrate that the total dynamic behaviour of a PSS vehicle is generally comparable with that of the conventional vehicle, while PSS exhibits significant improvement in absorbing the impact forces along the longitudinal direction when compared to the conventional suspension system. The PSS vehicle is found to be more stable than the conventional vehicle in terms of the directional performance against the disturbance of the road potholes on a straight line manoeuvre, while exhibiting a very similar handling performance on a curved line.  相似文献   

13.
ABSTRACT

The interaction between the tyre and the road is crucial for understanding the dynamic behaviour of a vehicle. The road–tyre friction characteristics play a key role in the design of braking, traction and stability control systems. Thus, in order to have a good performance of vehicle dynamic stability control, real-time estimation of the tyre–road friction coefficient is required. This paper presents a new development of an on-line tyre–road friction parameters estimation methodology and its implementation using both LuGre and Burckhardt tyre–road friction models. The proposed method provides the capability to observe the tyre–road friction coefficient directly using measurable signals in real-time. In the first step of our approach, the recursive least squares is employed to identify the linear parameterisation form of the Burckhardt model. The identified parameters provide, through a T–S fuzzy system, the initial values for the LuGre model. Then, a new LuGre model-based nonlinear least squares parameter estimation algorithm using the proposed static form of the LuGre to obtain the parameters of LuGre model based on recursive nonlinear optimisation of the curve fitting errors is presented. The effectiveness and performance of the algorithm are demonstrated through the real-time model simulations with different longitudinal speeds and different kinds of tyres on various road surface conditions in both Matlab/Carsim environments as well as collected data from real experiments on a commercial trailer.  相似文献   

14.
The curving performance of a transit rail vehicle model with 21 degrees of freedom is optimized using a combination of multibody dynamics and a genetic algorithm (GA). The design optimization is to search for optimal design variables so that the noise or wear, arising from misalignment of the wheelsets with the track, is reduced to a minimum level during curve negotiations with flange contact forces guiding the rail vehicle. The objective function is a weighted combination of angle of attack on wheelsets and ratios of lateral to vertical forces on wheels. Using the combination of the GA and a multibody dynamics modelling program, A'GEM, the generation of governing equations of motion for complex nonlinear dynamic rail vehicle models and the search for global optimal design variables can be carried out automatically. To demonstrate the feasibility and efficacy of the proposed approach of using the combination of multibody dynamics and GAs, the numerical simulation results of the optimization are offered, the selected objective function is justified, and the sensitivity analysis of different design parameters and different design parameter sets on curving performance is performed. Numerical results show that compared with suspension and inertial parameter sets, the geometric parameter set has the most significant effect on curving performance.  相似文献   

15.
The curving performance of a transit rail vehicle model with 21 degrees of freedom is optimized using a combination of multibody dynamics and a genetic algorithm (GA). The design optimization is to search for optimal design variables so that the noise or wear, arising from misalignment of the wheelsets with the track, is reduced to a minimum level during curve negotiations with flange contact forces guiding the rail vehicle. The objective function is a weighted combination of angle of attack on wheelsets and ratios of lateral to vertical forces on wheels. Using the combination of the GA and a multibody dynamics modelling program, A’GEM, the generation of governing equations of motion for complex nonlinear dynamic rail vehicle models and the search for global optimal design variables can be carried out automatically. To demonstrate the feasibility and efficacy of the proposed approach of using the combination of multibody dynamics and GAs, the numerical simulation results of the optimization are offered, the selected objective function is justified, and the sensitivity analysis of different design parameters and different design parameter sets on curving performance is performed. Numerical results show that compared with suspension and inertial parameter sets, the geometric parameter set has the most significant effect on curving performance.  相似文献   

16.
This paper discusses the nonlinear properties of inerters and their impact on vehicle suspension control. The inerter was recently introduced as an ideal mechanical two-terminal element, which is a substitute for the mass element, where the applied force is proportional to the relative acceleration across the terminals. Until now, ideal inerters have been applied to vehicle, motorcycle and train suspension systems, in which significant performance improvement was achieved. However, due to the mechanical construction, some nonlinear properties of the existing mechanical models of inerters are noted. This paper investigates the inerter nonlinearities, including friction, backlash and the elastic effect, and their influence on vehicle suspension performance. A testing platform is also built to verify the nonlinear properties of the inerter model.  相似文献   

17.
结合整车对全浮式驾驶室悬置系统的总体要求,利用理论计算、动力学仿真、有限元分析等方法进行各种工况模拟以及悬置性能分析,确保悬置系统各方面满足设计要求。实际样车在不同路况、速度下验证了悬置系统隔振率、平顺性、可靠性满足设计要求。通过对设计过程的总结,形成了一套驾驶室悬置系统设计方法、明确了性能评价指标和相关试验要求。  相似文献   

18.
In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.  相似文献   

19.
本文通过分析油气悬架中存在的气体弹簧刚度非线性特性和摩擦力,建立了主动悬架的非线性模型。分析了悬架的非线性特性对悬架运动的影响。仿真和试验结果表明,非线性模型比线性模型更接近油气悬架的实际情况,根据非线性模型设计的车身高度控制策略比根据线性模型设计的控制策略具有更好的控制效果。  相似文献   

20.
Optimized design for a MacPherson strut suspension with side load springs   总被引:1,自引:0,他引:1  
Undesired lateral force inevitably exists in a MacPherson suspension system, which is liable to damper rod’s side wear and promotes the damper’s inner friction decreasing the ride performance from the suspension system. Substituting a new side load spring with curved centerline for the conventional coil spring has been proven able to solve these problems and Multi-body Dynamics combining with Finite Elements Analysis may be an efficient method in optimizing its design. Therefore, taking a passenger car as example, a detailed multi-body dynamics model for the suspension system is built to simulate forces exerted on the damper and the minimization of its lateral component is selected as the design target for the spring. When the structure optimization of the side load spring is performed using FEA software ANSYS, its vertical and lateral elastic characteristics, supported by test data, are analyzed. After importing FEA results back to the suspension system, the dynamics simulation can be performed to validate the optimization result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号