首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
In this article, a logic for vehicle dynamics control during partial braking while turning a corner is presented, which only requires knowledge of the instantaneous speed of the four wheels. For this reason, the proposed control algorithm can be adopted on all ABS equipped cars. A scheme of the simulation program for logic validation is described, which is constituted by a loop of software models of the principal vehicle subsystems which are singly illustrated. The proposed logic has been tested both in closed and open-loop maneuvers. The results are provided in the form of time histories of the principal analyzed quantities. The analysis of the results confirms the goodness of the proposed control strategy.  相似文献   

2.
Summary We investigate the dynamics of a simple model of a wheelset that supports one end of a railway freight wagon by springs with linear characteristics and dry friction dampers. The wagon runs on an ideal, straight and level track with constant speed. The lateral dynamics in dependence on the speed is examined. We have included stick-slip and hysteresis in our model of the dry friction and assume that Coulomb's law holds during the slip phase. It is found that the action of dry friction completely changes the bifurcation diagram, and that the longitudinal component of the dry friction damping forces destabilizes the wagon.  相似文献   

3.
In this article a theoretical investigation of the dynamics of a railway bogie running on a tangent track with a periodic disturbance of the lateral track geometry is presented. The dynamics is computed for two values of the speed of the vehicle in combination with different values of the wavelength and amplitude of the disturbance. Depending on the combinations of the speed, the wavelength and the amplitude, straight line forward motion, different modes of symmetric or asymmetric periodic oscillations or aperiodic motions, which are presumably chaotic, are found. Statistical methods are applied for the investigation. In the case of sinusoidal oscillations they provide information about the phase shift between the different variables and the amplitudes of the oscillations. In the case of an aperiodic motion the statistical measures indicate some non-smooth transitions.  相似文献   

4.
整车多体动力学模型的建立、验证及仿真分析   总被引:5,自引:0,他引:5  
张云清  项俊  陈立平  孙营 《汽车工程》2006,28(3):287-291
利用多体动力学方法建立了某轿车的整车非线性多体动力学模型,模型中考虑了前后悬架、转向系统的详细几何结构参数,以及连接处的橡胶衬套、阻尼器的非线性特性,轮胎采用M agic Formu la模型。对所建模型进行了多种试验验证,并分析了该样车的操纵稳定性等相关特性,仿真结果表明所建整车多体模型有较高的精度。  相似文献   

5.
This paper presents the results of analytical, numerical and experimental investigations of a single railway wheelset. Periodic parametric excitation is added to one of the simplest linear mechanical models. This extended model describes, for example, the geometric deviations often experienced on roller rigs. Above a certain critical speed, the stationary running of the wheelset loses its stability. To verify the analytical and numerical results for the critical speed, experiments were carried out on a simple roller rig having a large ratio of the radii of the roller and the railway wheel.  相似文献   

6.
夏长高  王岱斐 《汽车工程》2004,26(2):174-176,232
利用柔性多体动力学方法建立了基于ADAMS软件平台的麦弗逊式独立悬架动力学仿真分析模型。并根据所建立的模型,对某轿车麦弗逊式前独立悬架的力变形特性进行了仿真和试验对比分析。通过仿真计算出了决定汽车不足转向度相关参数的相关系数。  相似文献   

7.
Because Formula cars are lighter than ordinary cars, the optimal settings for this type of car are thought to be different from those of a ordinary car. The front and rear weight distribution ratio of a vehicle is an important parameter that exerts a significant influence on critical cornering. The tendency of a ordinary car to under-steer during critical cornering is determined by the front and rear weight distribution ratio of the vehicle. Specifically, when the front of an ordinary FR (front-engine, rear wheel drive) vehicle is slightly heavier than the rear, the car tends to understeer during critical cornering. However, the optimal weight distribution ratio for critical cornering is not obvious for a formula car because of its lightness. This observation was investigated using a driving course similar to a real driving course to perform a maximum speed cornering simulations. It was found that a front to rear weight distribution ratio of 40:60 resulted in the fastest lap time. This ratio also gave the best results in the maximum-speed driving experiment performed using a driving simulator. Moreover, the maximum lateral acceleration during turning, the driving force, and the load movement of the inside and outside wheels was calculated using experimental driving force data and the concept of a tire friction circle. As a result, driving mechanics have been determined for a vehicle having a front/rear weight distribution ratio of 40:60 while traveling at maximum speed.  相似文献   

8.
In this paper, a predictive algorithm for vehicle trajectory control using the vehicle velocity and sideslip angle is proposed. Since the driving state of a vehicle generates nonholonomic constraint equations, it is difficult to control the trajectory with a conventional control algorithm. Furthermore, control vectors such as vehicle velocity and sideslip angle are coupled together; hence, a separate control for each variable is not suitable. In this study, a coupled control vector that combines the velocity and sideslip angle is proposed for the predictive control of vehicle trajectory. Since the coupled control vector is derived from the status of the vehicle’s motion, it is easy to generate a feedback control vector for the predictive controller. The coupled vector cannot be directly used as input to the vehicle systems; therefore, the vehicle input vector should be calculated from the control vector using a nonlinear function. Since nonlinear functions are not inserted in the control loop, they are calculated by the controller. Therefore, this method does not require a linearization process in the control logic, which enhances the stability and accuracy of the predictive controller.  相似文献   

9.
10.
11.
This paper considers the scope and the methodologies for enhancing active safety of road vehicles by sensing and control technologies. The first part of this paper introduces statistical data of traffic accidents in Japan, and describes the development of the drive recorder for accident/incident survey and analysis. Based on vehicle dynamics data, the algorithm of the drive recorder for capturing near-miss incident data is introduced. The second part of this paper reviews control problems of vehicle dynamics on micro-scale electric vehicles for enhancing vehicle dynamics and driving assistance function. In particular, the direct yaw moment control using in-wheel-motors and the active front steering control algorithm are described. The third part of the paper introduces the advanced driver assistance system adapted to driver characteristics and traffic situations. This part mainly describes an adaptive system, which adjusts the assisting manoeuvre depending on individual driver behaviour and situation, and some experimental investigations using the active interface vehicle and driving simulator. Finally, some perspectives and new challenges for future research on vehicle control technology are mentioned.  相似文献   

12.
介绍了全浮式驾驶室半挂列车的悬置隔振的仿真研究。在ADAMS中建立了基于整车的驾驶室悬置系统的多刚体动力学模型,并进行了仿真分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号