首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Automatic Cruise Control of a Mechatronically Steered Vehicle Convoy   总被引:4,自引:0,他引:4  
In this paper a convoy of two vehicles is considered where the second one is mechatronically operated. The convoy model used for simulation and controller design is derived by the method of multibody systems. A nonlinear cruise controller based on the concept of flat outputs in connection with exact state linearization is derived. A nonlinear local observer is also implemented. It is shown that such a system responds properly to arbitrary maneuvers performed by the driver of the leading vehicle.  相似文献   

2.
In this paper an adaptive cruise control (ACC) of a convoy consisting of two passenger cars is designed and tested. For the ACC only on board sensors in the following vehicle are used, communication within the convoy or between the controlled vehicle and electronic systems on the roadside is not assumed. A laser scanner is applied for range measurements, derived from the complete vision data of the area in front of the car. Since the scanner provides the range only, a Kalman Filter is used to estimate the velocity and acceleration of the car. For controller design the concept of flat outputs in connection with the exact state linearization is applied. Moreover, the exact state linearization is combined with a sliding mode control. The control parameters are obtained by an optimization algorithm using optimal tracking formulation. The optimization also guarantees individual vehicle stability as well as string stability of the convoy. It is shown how the convoy is responding to disturbances resulting from initial errors or from velocity steps by the leading vehicle at lower speed in simulation and experiment.  相似文献   

3.
Nonlinear ACC in Simulation and Measurement   总被引:2,自引:0,他引:2  
In this paper an adaptive cruise control (ACC) of a convoy consisting of two passenger cars is designed and tested. For the ACC only on board sensors in the following vehicle are used, communication within the convoy or between the controlled vehicle and electronic systems on the roadside is not assumed. A laser scanner is applied for range measurements, derived from the complete vision data of the area in front of the car. Since the scanner provides the range only, a Kalman Filter is used to estimate the velocity and acceleration of the car. For controller design the concept of flat outputs in connection with the exact state linearization is applied. Moreover, the exact state linearization is combined with a sliding mode control. The control parameters are obtained by an optimization algorithm using optimal tracking formulation. The optimization also guarantees individual vehicle stability as well as string stability of the convoy. It is shown how the convoy is responding to disturbances resulting from initial errors or from velocity steps by the leading vehicle at lower speed in simulation and experiment.  相似文献   

4.
电控离合器系统中,因为外界环境相当复杂,控制系统存在多种非线性,使得数学模型中参数是摄动的并且同时受到干扰,给机械式自动变速系统(AMT)的控制带来困难,针对离合器液压扫行机构,建立系统非线性动力学模型,进一步应用基于微分几何的反馈线性化方法,将原非线性系统等价为完全可控型线性化模型,然后设计滑模控制器,实车实验结果表明,设计的非线性控制器跟踪精度高,鲁棒性好。  相似文献   

5.
The design and performance of a mechanical air gap controller for a maglev transport vehicle are described. The basic requirement for a functional design of the controller is derived first and its effectiveness is shown by experiments. After the construction of dynamic vehicle models dynamic characteristics of the maglev vehicle are introduced and the stability criteria for magnetic levitation are derived. The effect of a dead zone in the mechanical air gap controller and nonlinear characteristics of the magnets, which are expected to exert a large influence on vehicle levitation performance, are investigated by simulations. The simulation results show that a low control lever ratio causes sudden deterioration of the levitation performance if there exists a dead zone in the controller, and a suitable control lever ratio which is unaffected by the dead zone is proposed. Finally, field test results with an actual maglev transport vehicle are shown and the dynamic levitation performance of the vehicle is discussed.  相似文献   

6.
具有非线性电液作动器的车辆悬架鲁棒PID控制   总被引:1,自引:1,他引:1  
张玉春  丛华  赵霖  张大巍 《汽车工程》2004,26(6):686-690,682
依据悬架实验装置,建立了电液作动器的非线性动力学方程,随后得到线性对象模型。作动器的非线性效果通过线性化模型的参数不确定性来体现。应用Matlab的非线性控制系统工具箱,设计了对象模型的鲁棒PID控制器。仿真和实验研究表明:该控制器对系统的不确定性具有较强的鲁棒性,提高了车辆悬架系统的性能。  相似文献   

7.
The paper addresses the need for improved mathematical models of human steering control. A multiple-model structure for a driver's internal model of a nonlinear vehicle is proposed. The multiple-model structure potentially offers a straightforward way to represent a range of driver expertise. The internal model is combined with a model predictive steering controller. The controller generates a steering command through the minimisation of a cost function involving vehicle path error. A study of the controller performance during an aggressive, nonlinear steering manoeuvre is provided. Analysis of the controller performance reveals a reduction in the closed-loop controller bandwidth with increasing tyre saturation and fixed controller gains. A parameter study demonstrates that increasing the multiple-model density, increasing the weights on the path error, and increasing the controller knowledge range all improved the path following accuracy of the controller.  相似文献   

8.
This paper presents automatic guidance control of a single-articulated all-wheel-steered vehicle being developed by the Korea Railroad Research Institute. The vehicle has an independent drive motor on each wheel except for the front axle. The guidance controller is designed so that the vehicle follows the given reference path within permissible lateral deviations. We use a three-input/three-output linearised model derived from the nonlinear dynamic model of the vehicle. For the purpose of simplifying the controller and making it tunable, we consider a decentralised control configuration. We first design a second-order decoupling compensator for the two-input/two-output system that is strongly coupled and then design a first-order controller for each decoupled feedback loop by using the characteristic ratio assignment method. The simulation results for the nonlinear dynamic model indicate that the proposed control configuration successfully achieves the design objectives.  相似文献   

9.
A novel direct yaw moment controller is developed in this paper. A hierarchical control architecture is adopted in the controller design. In the upper controller, a driver model and a vehicle model are used to obtain the driver's intention and the vehicle states, respectively. The upper controller determines the desired yaw moment by means of sliding mode control. The lower controller distributes differential longitudinal forces according to the desired yaw moment. A nonlinear tyre model, ‘UniTire’, is utilised to develop the novel distribution strategy and the control boundary.  相似文献   

10.
Adaptive Throttle Control for Speed Tracking   总被引:5,自引:0,他引:5  
Electronic throttle control is an important part of every advanced vehicle control system. In this paper we design an adaptive control scheme for electronic throttle that achieves good tracking of arbitrary constant speed commands in the presence of unknown disturbances. The design is based on a simplified linear vehicle model which is derived from a validated nonlinear one. The designed control scheme is simulated using the validated full order nonlinear vehicle model and tested on an actual vehicle. The simulation and vehicle test results are included in this paper to show the performance of the controller. Due to the learning capability of the adaptive control scheme, changes in the vehicle dynamics do not affect the performance of the controller in any significant manner.  相似文献   

11.
A new methodology to design the vehicle GCC (global chassis control) nonlinear controller is developed in this paper. Firstly, to handle the nonlinear coupling between sprung and unsprung masses, the vehicle is treated as a mechanical system of two-rigid-bodies which has 6 DOF (degree of freedom), including longitudinal, lateral, yaw, vertical, roll and pitch dynamics. The system equation is built in the yaw frame based on Lagrange's method, and it has been proved that the derived system remains the important physical properties of the general mechanical system. Then the GCC design problem is formulated as the trajectory tracking problem for a cascade system, with a Lagrange's system interconnecting with a linear system. The nonlinear robust control design problem of this cascade interconnected system is divided into two H control problems with respect to the two sub-systems. The parameter uncertainties in the system are tackled by adaptive theory, while the external uncertainties and disturbances are dealt with the H control theory. And the passivity of the mechanical system is applied to construct the solution of nonlinear H control problem. Finally, the effectiveness of the proposed controller is validated by simulation results even during the emergency manoeuvre.  相似文献   

12.
SUMMARY

Electronic throttle control is an important part of every advanced vehicle control system. In this paper we design an adaptive control scheme for electronic throttle that achieves good tracking of arbitrary constant speed commands in the presence of unknown disturbances. The design is based on a simplified linear vehicle model which is derived from a validated nonlinear one. The designed control scheme is simulated using the validated full order nonlinear vehicle model and tested on an actual vehicle. The simulation and vehicle test results are included in this paper to show the performance of the controller. Due to the learning capability of the adaptive control scheme, changes in the vehicle dynamics do not affect the performance of the controller in any significant manner.  相似文献   

13.
In this paper, a predictive algorithm for vehicle trajectory control using the vehicle velocity and sideslip angle is proposed. Since the driving state of a vehicle generates nonholonomic constraint equations, it is difficult to control the trajectory with a conventional control algorithm. Furthermore, control vectors such as vehicle velocity and sideslip angle are coupled together; hence, a separate control for each variable is not suitable. In this study, a coupled control vector that combines the velocity and sideslip angle is proposed for the predictive control of vehicle trajectory. Since the coupled control vector is derived from the status of the vehicle’s motion, it is easy to generate a feedback control vector for the predictive controller. The coupled vector cannot be directly used as input to the vehicle systems; therefore, the vehicle input vector should be calculated from the control vector using a nonlinear function. Since nonlinear functions are not inserted in the control loop, they are calculated by the controller. Therefore, this method does not require a linearization process in the control logic, which enhances the stability and accuracy of the predictive controller.  相似文献   

14.
Linear matrix inequality (LMI) methods, novel techniques in solving optimisation problems, were introduced as a unified approach for vehicle's active suspension system controller design. LMI methods were used to provide improved and computationally efficient controller design techniques. The active suspension problem was formulated as a standard convex optimisation problem involving LMI constraints that can be solved efficiently using recently developed interior point optimisation methods. An LMI based controller for a vehicle system was developed. The controller design process involved setting up an optimisation problem with matrix inequality constraints. These LMI constraints were derived for a vehicle suspension system. The resulting LMI controller was then tested on a quarter-car model using computer simulations. The LMI controller results were compared with an optimal PID controller design solution. The LMI controller was further tested by incorporating a nonlinear term in the vehicle's suspension model; the LMI's controller degraded response was enhanced by using gain-scheduling techniques. The LMI controller with gain-scheduling gave good results in spite of the unmodelled dynamics in the suspension system, which was triggered by large deflections due to off-road driving.  相似文献   

15.
Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.  相似文献   

16.
A robust H preview control is investigated for an active suspension system with look-ahead sensors. The uncertain system is described by a state-space model with linear nominal parts and additional nonlinear time-varying norm-bounded uncertainties. Proof of robust stability and a feedback-type robust H preview controller are derived by augmenting the dynamics of the original system and previewed road input. As, however, the augmented previewed road input gives the system a much larger dimension than the original system, much more computation time is required for solving of Riccati equations. To resolve this problem, a decomposed robust H preview controller is proposed. Robust stability and performance variations for system uncertainties are shown using a numerical example of a quarter-car model.  相似文献   

17.
This paper presents the design of a velocity tracking controller for safe vehicle maneuvering in Automated Highway Systems (AHS) in which traffic is organized into platoons of closely spaced vehicles. The notion of safety is related to the absence of collisions that exceed a given relative velocity threshold. In a companion paper, state dependent safety regions for the platoons are designed in such a way that, whenever the state of a platoon is inside these safety regions, it is guaranteed that platoon maneuvering will be safe and follow the behavior prescribed by the finite state machines that control vehicles maneuvers. Velocity profiles inside these safety regions are derived for all the single lane maneuvers and a nonlinear velocity tracking controller is designed to track these profiles. This controller attempts to complete the maneuvers with comfort in minimum time, whenever safety is not compromised. The control schemes presented in this paper were implemented and tested using AHS simulation software.  相似文献   

18.
A high-speed optimal trailer steering controller for a tractor–semitrailer is discussed. A linear model of a tractor–semitrailer with steered trailer axles is described, and an optimal trailer steering controller is introduced. A path-following controller is derived to minimise the path-tracking error in steady-state manoeuvres using active trailer steering. A roll stability controller is introduced by adding the lateral acceleration of trailer centre of gravity as another objective in the steering controller, so as to improve roll stability in transient manoeuvres. A strategy to switch between these two control modes is demonstrated. Simulation results show that the steering controller can ensure good path tracking of articulated vehicles in steady-state manoeuvres and improve roll stability significantly in transient manoeuvres, while maintaining the path-tracking deviation within an acceptable range. Tests with an experimental tractor–semitrailer equipped with a high-bandwidth active steering system validate the controller design and simulation results. The roll stability controller reduces the measured rearward amplification by 27%.  相似文献   

19.
《JSAE Review》1999,20(4):447-452
This paper describes the development of a damping control system for semi-active suspension which is based on nonlinear H control theory instead of conventional linear control theory. A two degrees of freedom system is used as the structure for the vehicle suspension model. Since the structure is bilinear, it's not easy to design the controller. We designed the controller based on the Hamilton-Jacobi inequality by solving a linear Riccati equation. We were able to verify by simulation that nonlinear H control theory made it possible to control vehicle vibration optimally and smoothly.  相似文献   

20.
In this paper, a new approach to model reference based adaptive second-order sliding mode control together with adaptive state feedback is presented to control the longitudinal dynamic motion of a high speed train for automatic train operation with the objective of minimal jerk travel by the passengers. The nonlinear dynamic model for the longitudinal motion of the train comprises of a locomotive and coach subsystems is constructed using multiple point-mass model by considering the forces acting on the vehicle. An adaptation scheme using Lyapunov criterion is derived to tune the controller gains by considering a linear, stable reference model that ensures the stability of the system in closed loop. The effectiveness of the controller tracking performance is tested under uncertain passenger load, coupler-draft gear parameters, propulsion resistance coefficients variations and environmental disturbances due to side wind and wet rail conditions. The results demonstrate improved tracking performance of the proposed control scheme with a least jerk under maximum parameter uncertainties when compared to constant gain second-order sliding mode control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号