首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
An active suspension with preview is developed for the rear axle of a commercial vehicle. The obtained improvements are promising and justify further investigation of the more feasible semi-active suspensions with preview. The inherent non-linearity of semi-active suspensions with switching shock absorbers and the need for controllers that can handle a broad class of control objectives has led to the development of several numerical control methods for both multi-level and continuously variable shock absorbers. The most promising control method and shock absorber type are selected and mounted in a test vehicle. Some first experimental results are discussed.  相似文献   

2.
An Experimental Investigation of Preview Control   总被引:3,自引:0,他引:3  
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car 'Hardware-in-the-loop' (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

3.
There is mounting theoretical evidence to suggest that preview control can be of substantial benefit to a semi-active suspension for random road inputs. In this paper, the benefits of wheel-base preview control are measured experimentally, using a prototype semi-active damper in a half-car ‘Hardware-in-the-loop’ (HiL) rig with a planar two-axle heavy vehicle model. The benefits of preview control using the prototype semi-active damper are found to be less than theoretically possible, due to the phase lag between the demanded and achieved damping force. It is shown that the performance of the prototype damper can be improved significantly by having a theoretical simulation running ahead of the HiL vehicle. The theoretical simulation is used to predict the demanded damper force for the HiL vehicle, and thereby compensate for the phase lag in the prototype damper.  相似文献   

4.
In this study, preview control algorithms for the active and semi-active suspension systems of a full tracked vehicle (FTV) are designed based on a 3-D.O.F model and evaluated. The main issue of this study is to make the ride comfort characteristics of a fast moving tracked vehicle better to keep an operator’s driving capability. Since road wheels almost trace the profiles of the road surface as long as the track doesn’t depart from the ground, the preview information can be obtained by measuring only the absolute position or velocity of the first road wheel. Simulation results show that the performance of the sky-hook suspension system almost follows that of full state feedback suspension system and the on-off semi-active system carries out remarkable performance with the combination of 12 on-off semi-active suspension units. The results simulated with 1st and 2nd weighting sets mean that the suspension system combined with the soft type of inner suspension and hard type of outer suspension can carry out better ride comfort characteristics than that with identical suspensions. The full tracked vehicle (FTV) system is uncontrollable and the system is split into controllable and uncontrollable subspace using singular value decomposition transformation. Frequency response curves to four types of inputs, such as heaving, pitching, rolling, and warping inputs, also demonstrate the merits of preview control in ride comfort. All the frequency characteristic responses confirm the continuous time results.  相似文献   

5.
Controllers for semi-active suspensions have to account for constraints on damper range, tire force and suspension travel. Two approaches to incorporate these constraints in the design of controllers to minimize peak values in the chassis acceleration are considered. It is assumed that information on the oncoming road elevations (preview) is available. In the soft constraint approach, the constraints on tire force and suspension travel are included in a quadratic performance index. Two clipped optimal control laws, which deal with preview in a different way, are presented. Simulation results with a 2-DOF vehicle model on some rounded pulses show that these laws do not work satisfactorily with respect to the constraints. Therefore, the control problem is reformulated as a constrained optimization problem with hard constraints on tire force and suspension travel. Simulations with the same model on the same rounded pulses show that the hard constraint approach handles the constraints more properly.  相似文献   

6.
采用电流变阻尼器汽车悬架的半主动控制研究   总被引:4,自引:3,他引:4  
徐顺香  瞿伟廉  袁润章 《汽车工程》2004,26(5):593-595,622
采用电流变阻尼器作为汽车悬架系统的减振器,应用最优控制策略,设计了汽车悬架的半主动控制系统。大量仿真实验表明,采用电流变阻尼器的半主动控制悬架系统有效地改善了汽车驾驶平顺性和乘坐舒适性。  相似文献   

7.
In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.  相似文献   

8.
汽车非线性半主动悬架的模糊神经网络控制   总被引:8,自引:0,他引:8  
李以农  郑玲 《汽车工程》2004,26(5):600-604,628
考虑磁流变减振器阻尼力和悬架弹性元件非线性特性,建立车辆6自由度的半主动悬架非线性动力学模型。提出了一种基于模糊神经网络系统结构的模型参考自适应控制方法来研究汽车半主动悬架的非线性控制问题,并考虑半车模型前后悬架的输入时滞,对其进行了仿真研究。研究结果表明:运用模糊神经网络非线性控制方法能够使人体和车身垂直加速度、俯仰角加速度都得到很大的衰减,证实这种模糊神经网络控制方法可大大减少路面对车身的振动冲击,提高汽车行驶平顺性。  相似文献   

9.
The potential performance improvement using preview control for active vehicle suspension was first recognized in the late nineteen sixties. All work done since that time has been based on optimal control theory using simple vehicle models.

In this article, the performance of quarter vehicle preview controllers when applied to a real off-road vehicle is simulated using both two degree of freedom quarter and ten degree of freedom full vehicle models. The results, which are compared with non-preview active and conventional passive suspensions, confirm that preview control reduces vertical acceleration of the body centre of gravity, which results in improved ride quality. Further, reductions in pitch and roll motion result from smaller vertical displacements of the vehicle quarters. Coupling between quarters, through the vehicle body, appears to have a smoothing effect on the control.

As an alternative to optimal control theory based controllers, a simple ad hoc preview controller based on isolating the vehicle body from dynamic loads transmitted through the suspension is proposed. Simulation results show that such a controller outperforms the optimal control theory based controllers over small discrete disturbances but responds poorly to disturbances encountered from other than steady state.  相似文献   

10.
This survey paper aims to provide some insight into the design of suspension control system within the context of existing literature and share observations on current hardware implementation of active and semi-active suspension systems. It reviews the performance envelop of active, semi-active, and passive suspensions with a focus on linear quadratic-based optimisation including a specific example. The paper further discusses various design aspects including other design techniques, the decoupling of load and road disturbances, the decoupling of pitch and heave modes, the use of an inerter as an additional design element, and the application of preview. Various production and near production suspension systems were examined and described according to the features they offer, including self-levelling, variable damping, variable geometry, and anti-roll damping and stiffness. The lessons learned from these analytical insights and related hardware implementations are valuable and can be applied towards future active or semi-active suspension design.  相似文献   

11.
Adaptive Suspension Concepts for Road Vehicles   总被引:1,自引:0,他引:1  
Most vehicle suspensions are composed of passive spring and damper devices, although improved suspension performance is possible if an active system is used to control forces or relative velocities. The complexity, power requirements, and cost of fully active suspensions have restricted their use. Various partially active suspensions have been proposed and suspensions with slow load levelers and variable dampers are in widespread use. Here we analyze a class of basically passive suspensions the parameters of which can be varied actively in response to various measured signals on the vehicle. These suspensions can come close to optimal performance with simpler means than many of the active or semi-active schemes previously proposed.  相似文献   

12.
Optimal Preview Control of Rear Suspension Using Nonlinear Neural Networks   总被引:5,自引:0,他引:5  
The performance of neural networks to be used for identification and optimal control of nonlinear vehicle suspensions is analyzed. It is shown that neuro-vehicle models can be efficiently trained to identify the dynamical characteristics of actual vehicle suspensions. After trained, this neuro-vehicle is used to train both front and rear suspension neuro-controllers under a nonlinear rear preview control scheme. To do that, a neuro-observer is trained to identify the inverse dynamics of the front suspension so that front road disturbances can be identified and used to improve the response of the rear suspension. The performance of the vehicle with neuro-control and with LQ control are compared.  相似文献   

13.
Both ride quality and roadholding of actively suspended vehicles can be improved by sensing the road ahead of the vehicle and using this information in a preview controller. Previous applications have used look-ahead sensors mounted on the front bumper to measure terrain beneath. Such sensors are vulnerable, potentially confused by water, snow, or other soft obstacles and offer a fixed preview time. For convoy vehicle applications, this paper proposes using the overall response of the preceding vehicle(s) to generate preview controller information for follower vehicles. A robust observer is used to estimate the states of a quarter-car vehicle model, from which road profile is estimated and passed on to the follower vehicle(s) to generate a preview function. The preview-active suspension, implemented in discrete time using a shift register approach to improve simulation time, reduces sprung mass acceleration and dynamic tyre deflection peaks by more than 50% and 40%, respectively. Terrain can change from one vehicle to the next if a loose obstacle is dislodged, or if the vehicle paths are sufficiently different so that one vehicle misses a discrete road event. The resulting spurious preview information can give suspension performance worse than that of a passive or conventional active system. In this paper, each vehicle can effectively estimate the road profile based on its own state trajectory. By comparing its own road estimate with the preview information, preview errors can be detected and suspension control quickly switched from preview to conventional active control to preserve performance improvements compared to passive suspensions.  相似文献   

14.
A simple vehicle model is presented incorporating passive, active, and semi-active suspensions. When the desired feedback variables are ideally available, the system response is well understood and excellent sprung mass isolation results. More often than not, the measured variables must be signal processed in some manner prior to their use in some control algorithm. This paper presents the expected response of a simple vehicle with an active and/or semi-active suspension, subject to non-ideal feedback information.  相似文献   

15.
Semi-Active Heave and Pitch Control for Ground Vehicles   总被引:1,自引:0,他引:1  
A model is presented which includes both the heave and pitch motions of a vehicle traversing a roadway. Provision is made for testing totally passive, totally active, and semi-active secondary suspensions. Control strategies are developed for the totally active case and vehicle isolation is demonstrated. These active controllers are then modified to be semi-active, i.e., no power is provided from the controller to the vehicle. The semi-active isolation is shown to be comparable to the totally active system and much superior to the passive suspension.  相似文献   

16.
SUMMARY

Most vehicle suspensions are composed of passive spring and damper devices, although improved suspension performance is possible if an active system is used to control forces or relative velocities. The complexity, power requirements, and cost of fully active suspensions have restricted their use. Various partially active suspensions have been proposed and suspensions with slow load levelers and variable dampers are in widespread use. Here we analyze a class of basically passive suspensions the parameters of which can be varied actively in response to various measured signals on the vehicle. These suspensions can come close to optimal performance with simpler means than many of the active or semi-active schemes previously proposed.  相似文献   

17.
SUMMARY

A simple vehicle model is presented incorporating passive, active, and semi-active suspensions. When the desired feedback variables are ideally available, the system response is well understood and excellent sprung mass isolation results. More often than not, the measured variables must be signal processed in some manner prior to their use in some control algorithm. This paper presents the expected response of a simple vehicle with an active and/or semi-active suspension, subject to non-ideal feedback information.  相似文献   

18.
Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

19.
Summary Various control techniques, especially LQG optimal control, have been applied to the design of active and semi-active vehicle suspensions over the past several decades. However passive suspensions remain dominant in the automotive marketplace because they are simple, reliable, and inexpensive. The force generated by a passive suspension at a given wheel can depend only on the relative displacement and velocity at that wheel, and the suspension parameters for the left and right wheels are usually required to be equal. Therefore, a passive vehicle suspension can be viewed as a decentralized feedback controller with constraints to guarantee suspension symmetry. In this paper, we cast the optimization of passive vehicle suspensions as structure-constrained LQG/H2 optimal control problems. Correlated road random excitations are taken as the disturbance inputs; ride comfort, road handling, suspension travel, and vehicle-body attitude are included in the cost outputs. We derive a set of necessary conditions for optimality and then develop a gradient-based method to efficiently solve the structure-constrained H2 optimization problem. An eight-DOF four-wheel-vehicle model is studied as an example to illustrate application of the procedure, which is useful for design of both passive suspensions and active suspensions with controller-structure constraints.  相似文献   

20.
SUMMARY

Most vehicle suspension systems use fixed passive components that offer a compromise in performance between sprung mass isolation, suspension travel, and tireroad contact force. Recently, systems with discretely adjustable dampers and air springs been added to production vehicles. Active and semi-active damping concepts for vehicle suspensions have also been studied theoretically and with physical prototypes. This paper examines the optimal performance comparisons of variable component suspensions, including active damping and full-state feedback, for “quartercar” heave models. Two and three dimensional optimizations are computed using performance indicators to find the component parameters (control gains) that provide “optimal” performance for statistically described roadway inputs. The effects of performance weighting and feedback configuration are examined. Active damping is shown to be mainly important for vehicle isolation. A passive vehicle suspension can control suspension travel and tire contact force nearly as well as a full state feedback control strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号