首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a driver model with the multiple regression and the neural network is constructed to analyze the relationship between the driver's control action and the information that includes data of vehicle behavior and environment. Using these models, effectiveness of the information to control the action of a driver is examined. To evaluate the intelligent driver support systems, Mental Work Load (MWL) model is constructed with the multiple regression and the neural network. MWL is expressed as Heart Rate Variability (HRV). Measured HRV data and calculated HRV data with MWL model show good agreement. Effectiveness of information is examined using the MWL model. From these results, it is shown that the analytical method with the driver's MWL can be used to assess and improve the intelligent driver support systems as the next stage of this research.  相似文献   

2.
This paper describes a lateral disturbance compensation algorithm for an application to a motor-driven power steering (MDPS)-based driver assistant system. The lateral disturbance including wind force and lateral load transfer by bank angle reduces the driver's steering refinement and at the same time increases the possibility of an accident. A lateral disturbance compensation algorithm is designed to determine the motor overlay torque of an MDPS system for reducing the manoeuvreing effort of a human driver under lateral disturbance. Motor overlay torque for the compensation of driver's steering torque induced by the lateral disturbance consists of human torque feedback and feedforward torque. Vehicle–driver system dynamics have been investigated using a combined dynamic model which consists of a vehicle dynamic model, driver steering dynamic model and lateral disturbance model. The human torque feedback input has been designed via the investigation of the vehicle–driver system dynamics. Feedforward input torque is calculated to compensate additional tyre self-aligning torque from an estimated lateral disturbance. The proposed compensation algorithm has been implemented on a developed driver model which represents the driver's manoeuvreing characteristics under the lateral disturbance. The developed driver model has been validated with test data via a driving simulator in a crosswind condition. Human-in-the-loop simulations with a full-scale driving simulator on a virtual test track have been conducted to investigate the real-time performance of the proposed lateral disturbance compensation algorithm. It has been shown from simulation studies and human-in-the-loop simulation results that the driver's manoeuvreing effort and a lateral deviation of the vehicle under the lateral disturbance can be significantly reduced via the lateral disturbance compensation algorithm.  相似文献   

3.
SUMMARY

Advanced Steering System with artificial steering wheel torque-active kinesthetic information feedback for improving handling qualities is discussed. Fundamentally the structure of the system may be considered to another form of model following control. In this system, a driver always remains in the control loop and receives steering control information which give him/her a direct hint to steer a steering wheel. This system works as a stability and control augmentation system of the vehicle to improve the vehicle handling qualities both in compensatory and pursuit control task, and is expected to reduce driver's workload. Effects of this system are analyzed in terms of man-machine system characteristics. Identification of driver dynamics was carried out to find why such improvement could be achieved. Availability of the proposed system is verified by analysis, simulator and proving ground tests.  相似文献   

4.
The aim of this work is to develop a comprehensive yet practical driver model to be used in studying driver–vehicle interactions. Drivers interact with their vehicle and the road through the steering wheel. This interaction forms a closed-loop coupled human–machine system, which influences the driver's steering feel and control performance. A hierarchical approach is proposed here to capture the complexity of the driver's neuromuscular dynamics and the central nervous system in the coordination of the driver's upper extremity activities, especially in the presence of external disturbance. The proposed motor control framework has three layers: the first (or the path planning) plans a desired vehicle trajectory and the required steering angles to perform the desired trajectory; the second (or the musculoskeletal controller) actuates the musculoskeletal arm to rotate the steering wheel accordingly; and the final layer ensures the precision control and disturbance rejection of the motor control units. The physics-based driver model presented here can also provide insights into vehicle control in relaxed and tensed driving conditions, which are simulated by adjusting the driver model parameters such as cognition delay and muscle co-contraction dynamics.  相似文献   

5.
《JSAE Review》2002,23(4):489-494
This paper discusses how a cab-over truck driver looks at information shown in a display while driving, to give information to the driver safely and securely. The authors investigated a driver's behavior in changing focus to an information display while driving an actual truck and a driving simulator. Relation between distribution of attention and individual lengths of time to change focus to the display was examined. Average diversion time away from road was found to be approximately 1.7 s, longer than that for passenger cars under similar traffic conditions. Driving skills do not have any influence on individual lengths of time.  相似文献   

6.
Due to increasing demands for time and cost efficient vehicle and driver assistant systems development, numerical simulation of closed-loop manoeuvres becomes increasingly important. Thus, the driver has to be considered in the modelling. On the basis of a two-layer approach to model a driver's steering behaviour, the field of application is extended to higher lateral accelerations in this study. An analytical method to determine the driver parameters is presented, which is based on the two-wheel vehicle model. The simulation results are determined using a full vehicle model including all essential nonlinearities. Standard manoeuvres in the nonlinear range of vehicle handling behaviour are performed. A cornering manoeuvre is chosen to show the characteristics of the proposed driver model.  相似文献   

7.
In recent years, the driver's active assistances have become important features in commercialised vehicles. In this paper, we present one of these features which consists of an advanced driver assistance system for lane keeping. A thorough analysis of its performance and stability with respect to variations in driver behaviour will be given. Firstly, the lateral control model based on visual preview is established and the kinematics model based on visual preview, including speed and other factors, is used to calculate the lateral error and direction error. Secondly, and according to the characteristics of the lateral control, an efficient strategy of intelligent electric vehicle lateral mode is proposed. The integration of the vehicle current lateral error and direction error is chosen as the parameter of the sliding mode switching function to design the sliding surface. The control variables are adjusted according to the fuzzy control rules to ensure that they meet the existence and reaching condition. A new fuzzy logic-based switching strategy with an efficient control law is also proposed to ensure a level of continuous and variable sharing according to the state of the driver and the vehicle positioning on the roadway. The proposed control law acts either at the centre of the lane, as a lane keeping assistance system to reduce the driver's workload for long trips, or as a lane departure avoidance system that intervenes for unintended lane departures. Simulation results are included in this paper to explain this concept.  相似文献   

8.
The present study proposes an objective handling qualities evaluation method using driver-in-the-loop analysis. The driving simulator experiments were performed for various driving conditions, drivers and vehicle dynamics. The response characteristics of the driver model and the closed-loop system were analyzed. The analysis revealed the driving strategies clearly, indicating the importance of closed-loop analysis. Using the identified driver model and its strategies, a cost function of the handling qualities was constructed. The cost function can be used to estimate the handling qualities analytically from the vehicle dynamics. The proposed method was validated by comparison with the handling qualities evaluation rated by the driver's comments.  相似文献   

9.
《JSAE Review》1999,20(4):537-542
This paper discusses an analysis of “driver-vehicle” behavior during braking in a turn. In this study, a new braking model was developed in consideration of actual driver's operation, and experiments were conducted on mountain roads to identify one novice and one skilled driver's braking model parameters.The computer simulations have shown the following tendency. The novice driver needed more compensatory steering operation than the skilled driver to trace the course. A controlled braking force distribution was particularly effective for the novice driver.  相似文献   

10.
《JSAE Review》1994,15(1):35-43
This paper presents an anlysis of the control behaviour of a driver during curves and lane changes. We model the driver's behaviour taking the roll motion of the vehicle into consideration. Using this model with constraints on the roll angle, it is possible to model lane change maneuvers without specifying a path. The validity of the model is investigated through a comparison between computer simulation and experimentation using a driving simulator system.  相似文献   

11.
A driver model is designed which relates the driver's action to his perception, driving experience, and preferences over a wide range of possible traffic situations. The basic idea behind the work is that the human uses his sensory perception and his expert knowledge to predict the vehicle's future behavior for the next few seconds (prediction model). At a certain sampling rate the vehicle's future motion is optimized using this prediction model, in order to meet certain objectives. The human tries to follow this optimal behavior using a compensatory controller. Based on this hypothesis, human vehicle driving is modeled by a hierarchical controller. A repetitive nonlinear optimization is employed to plan the vehicle's future motion (trajectory planning task), using an SQP algorithm. This is combined with a PID tracking control to minimize its deviations. The trajectory planning scheme is experimentally verified for undisturbed driving situations employing various objectives, namely ride comfort, lane keeping, and minimized speed variation. The driver model is then applied to study path planning during curve negotiation under various preferences. A highly dynamic avoidance maneuver (standardized ISO double lane change) is then simulated to investigate the overall stability of the closed loop vehicle/driver system.  相似文献   

12.
构建基于模块化的径向基函数神经网络(RBFNN)模型与专家系统的产生式规则混合决策的汽车电驱动系统的故障诊断系统。结果表明,通过该诊断系统可实现电驱动系统故障的智能化诊断。  相似文献   

13.
《JSAE Review》1994,15(3):229-233
A novel detector of breath alcohol for a driver has been developed. The detector has three features. A mouth piece is not required because driver's breath is introduced to the detector by a suction pump. The influence of fluctuations of driver's breath flow is extremely reduced by the calibration of alcohol concentration using a humidity change. The detector is able to measure breath alcohol concentration rapidly, and the measurement time is about 2 to 3 seconds. The excellent performance have been demonstrated both in breath alcohol simulation tests and in a drunken persons test.  相似文献   

14.
In this paper, a systematic design with multiple hierarchical layers is adopted in the integrated chassis controller for full drive-by-wire vehicles. A reference model and the optimal preview acceleration driver model are utilised in the driver control layer to describe and realise the driver's anticipation of the vehicle's handling characteristics, respectively. Both the sliding mode control and terminal sliding mode control techniques are employed in the vehicle motion control (MC) layer to determine the MC efforts such that better tracking performance can be attained. In the tyre force allocation layer, a polygonal simplification method is proposed to deal with the constraints of the tyre adhesive limits efficiently and effectively, whereby the load transfer due to both roll and pitch is also taken into account which directly affects the constraints. By calculating the motor torque and steering angle of each wheel in the executive layer, the total workload of four wheels is minimised during normal driving, whereas the MC efforts are maximised in extreme handling conditions. The proposed controller is validated through simulation to improve vehicle stability and handling performance in both open- and closed-loop manoeuvres.  相似文献   

15.
随着汽车电子技术的发展,智能化信息技术在汽车产业中的应用已成为大势所趋。它能合理、有效地对运营车辆进行监控、管理,规范驾驶员正常驾驶行为,减少因车辆管控不当或驾驶员非规范性行为造成的意外事故,并能降低车辆油耗和改善汽车尾气排放,是汽车产业变革发展所需。  相似文献   

16.
根据当前智慧高速公路系统的发展历程,总结一些典型的车路协同系统逻辑与物理模型。在总结国内外智慧高速公路系统的整体架构之后,提出新一代智慧高速系统的总体架构-IntelliWay,包括智慧高速公路系统分层模块化架构、基于变耦合程度的智能分级和基于事件驱动的数据分发机制。同时,根据当前智慧高速公路系统的主流应用技术,总结车载高精度定位、高级驾驶辅助系统(Advanced Driver Assistance System, ADAS)与车载总线、路侧设备优化、异构网络融合、网络负载均衡、网络信息安全、多传感器融合与协同感知、以用户为中心的场景自适应信息发布、车辆群体协同自动驾驶、基于大数据与人工智能的交通态势预测、车道级主动交通管理、组件式应用服务开发等驱动智慧高速公路系统快速发展的新兴技术研究现状,然后基于以上关键技术的特点提出未来智慧高速公路系统应用的实施建议;分析广播式交通信息服务、主动交通管理、伴随式信息服务、自动驾驶专用道、车辆队列协同驾驶等智慧高速公路系统的典型应用场景,进行智慧高速系统的测评方法分析和相关案例分析。最后,系统性地分析和预测智慧高速系统存在的挑战及未来发展趋势,以...  相似文献   

17.
为了量化交通拥堵对驾驶人生理和心理特性的影响,选取驾驶人的心率均值为指标,在大量实测数据基础上研究交通拥堵程度对驾驶人心率特性的影响,并构建心率均值和压力系数间的关系模型。研究表明,交通拥堵对驾驶人的心率特性影响显著,3种回归模型拟合优度的确定系数都达到了0.6以上,且二次多项式的回归效果最好。   相似文献   

18.
Short-term traffic flow forecasting is a critical function in advanced traffic management systems (ATMS) and advanced traveler information systems (ATIS). Accurate forecasting results are useful to indicate future traffic conditions and assist traffic managers in seeking solutions to congestion problems on urban freeways and surface streets. There is new research interest in short-term traffic flow forecasting due to recent developments in intelligent transportation systems (ITS) technologies. Previous research involves technologies in multiple areas, and a significant number of forecasting methods exist in the literature. However, most studies used univariate forecasting methods, and they have limited forecasting abilities when part of the data is missing or erroneous. While the historical average (HA) method is often applied to deal with this issue, the forecasting accuracy cannot be guaranteed. This article makes use of the spatial relationship of traffic flow at nearby locations and builds up two multivariate forecasting approaches: the vector autoregression (VAR) and the general regression neural network (GRNN) based forecasting models. Traffic data collected from U.S. Highway 290 in Houston, TX, were used to test the model performance. Comparison of performances of the three models (HA, VAR, and GRNN) in different missing ratios and forecasting time intervals indicates that the accuracy of the VAR model is more sensitive to the missing ratio, while on average the GRNN model gives more robust and accurate forecasting with missing data, particularly when the missing data ratio is high.  相似文献   

19.
提出了基于驾驶员脸部及周围信息的驾驶员状态检测方法。文章通过实车摄像头采集了驾驶员驾驶状态视频数据,利用Dlib和OpenCV库对采集的驾驶员图像进行脸部检测,基于驾驶员脸部数据建立了深度学习数据集,然后基于该数据集设计了一种卷积神经网络模型FaceNet,利用PyTorch深度学习框架在数据集上对模型进行训练,最终得到了有较高准确率的驾驶员状态检测模型,其可识别抽烟、睡觉、左手打电话和右手打电话四种驾驶员状态。  相似文献   

20.
近年来,智能网联汽车(ICV)已成为智能工业时代最有前景的发展方向。作为现代移动的重要模式,ICV的设计和开发越来越强调个性化需求。提出一种仅使用车载CAN总线行车状态数据,基于深度学习的驾驶人身份识别通用框架。首先采集20名驾驶人在固定试验路线下,包括不同道路类型、不同交通条件下的自然驾驶行车状态数据集;其次对9种类型的CAN信号行车数据进行数据清洗与重采样,构建数据样本集。搭建了由卷积层、池化层、全连接层、SoftMax层构成的一维卷积神经网络(1-D CNN)驾驶人身份识别模型,并且使用Adam算法、L2正则化、Dropout、小批量梯度下降等方法对模型性能进行优化。算法验证过程中,探讨了模型卷积核占比、卷积核数量、卷积层层数、全连接层节点规模对模型识别准确率的影响,进而对模型结构参数进行优选。进一步地,将该算法与K近邻(KNN)、支持向量机(SVM)、多层感知器(MLP)等传统机器学习方法及深度学习算法长短时记忆网络(LSTM)进行对比分析,同时探究样本时间窗口大小、样本数据重叠度、驾驶人数量对模型识别结果的影响。在数据时间窗口为1 s、数据重合度80%的条件下,对20名驾驶人进行识别,评价指标宏观F1分数可达99.1%,表明该模型表现明显优于其他对比模型算法,其对驾驶人身份识别表现稳定,鲁棒性强。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号