首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
In this paper, an analytical design approach for the development of self-powered active suspensions is investigated and is applied to optimise the control system design for an active lateral secondary suspension for railway vehicles. The conditions for energy balance are analysed and the relationship between the ride quality improvement and energy consumption is discussed in detail. The modal skyhook control is applied to analyse the energy consumption of this suspension by separating its dynamics into the lateral and yaw modes, and based on a simplified model, the average power consumption of actuators is computed in frequency domain by using the power spectral density of lateral alignment of track irregularities. Then the impact of control gains and actuators’ key parameters on the performance for both vibration suppressing and energy recovery/storage is analysed. Computer simulation is used to verify the obtained energy balance condition and to demonstrate that the improved ride comfort is achieved by this self-powered active suspension without any external power supply.  相似文献   

2.
The paper describes a simulation study that provides a comprehensive comparison between full-active and semi-active suspensions for improving the vertical ride quality of railway vehicles. It includes an assessment of the ride quality benefits that can theoretically be achieved with idealised devices, and also examines the impact of real devices based upon hydraulic actuation technology.  相似文献   

3.
This paper presents the optimisation of damping characteristics in bogie suspensions using a multi-objective optimisation methodology. The damping is investigated and optimised in terms of the resulting performances of a railway vehicle with respect to safety, comfort and wear considerations. A complete multi-body system model describing the railway vehicle dynamics is implemented in commercial software Gensys and used in the optimisation. In complementary optimisation analyses, a reduced and linearised model describing the bogie system dynamics is also utilised. Pareto fronts with respect to safety, comfort and wear objectives are obtained, showing the trade-off behaviour between the objectives. Such trade-off curves are of importance, especially in the design of damping functional components. The results demonstrate that the developed methodology can successfully be used for multi-objective investigations of a railway vehicle within models of different levels of complexity. By introducing optimised passive damping elements in the bogie suspensions, both safety and comfort are improved. In particular, it is noted that the use of optimised passive damping elements can allow for higher train speeds. Finally, adaptive strategies for switching damping parameters with respect to different ride conditions are outlined and discussed.  相似文献   

4.
Railway Vehicle Active Suspensions   总被引:3,自引:0,他引:3  
This paper reviews the state-of-the-art of active suspensions for use on railway vehicles. The primary focus of the paper is on ride quality control, both vertical and lateral, and on lateral stability control.

The section on theoretical considerations summarizes the results of a one-degree of freedom optimization and then investigates analytically the use of active suspensions for lateral ride and stability augmentation. It is shown that separate control structures using different measurements and actuator actions are very effective in controlling both ride quality and stability.

A section on a survey ofcurrent activities reviews published research on active railway suspension work around the world.

Finally a concluding section indicates future trends in active suspension applications.  相似文献   

5.
There is a need to further improve driver comfort in commercial vehicles. The variable geometry active suspension offers an interesting option to achieve this in an energy efficient way. However, the optimal control strategy and the overal performance potential remains unclear. The aim of this paper is to quantify the level of performance improvement that can theoretically be obtained by replacing a conventional air sprung cabin suspension design with a variable geometry active suspension. Furthermore, the difference between the use of a linear quadratic (LQ) optimal controller and a classic skyhook controller is investigated. Hereto, an elementary variable geometry actuator model and experimentally validated four degrees of freedom quarter truck model are adopted. The results show that the classic skyhook controller gives a relatively poor performance while a comfort increase of 17–28% can be obtained with the LQ optimal controller, depending on the chosen energy weighting. Furthermore, an additional 75% comfort increase and 77% energy cost reduction can be obtained, with respect to the fixed gain energy optimal controller, using condition-dependent control gains. So, it is concluded that the performance potential using condition-dependent controllers is huge, and that the use of the classic skyhook control strategy should, in general, be avoided when designing active secondary suspensions for commercial vehicles.  相似文献   

6.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

7.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

8.
Sliding mode observation and control for semiactive vehicle suspensions   总被引:1,自引:0,他引:1  
This paper investigates the application of robust, nonlinear observation and control strategies, namely sliding mode observation and control (SMOC), to semiactive vehicle suspensions using a model reference approach. The vehicle suspension models include realistic nonlinearities in the spring and magnetorheological (MR) damper elements, and the nonlinear reference models incorporate skyhook damping. Since full state measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only suspension deflection as a measured input is developed. The performance and robustness of sliding mode control (SMC), SMO, and SMOC are demonstrated through comprehensive computer simulations and compared to popular alternatives. The results of these simulations reveal the benefits of sliding mode observation and control for improved ride quality, and should be directly transferable to commercial semiactive vehicle suspension implementations.  相似文献   

9.
This paper investigates the application of robust, nonlinear observation and control strategies, namely sliding mode observation and control (SMOC), to semiactive vehicle suspensions using a model reference approach. The vehicle suspension models include realistic nonlinearities in the spring and magnetorheological (MR) damper elements, and the nonlinear reference models incorporate skyhook damping. Since full state measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only suspension deflection as a measured input is developed. The performance and robustness of sliding mode control (SMC), SMO, and SMOC are demonstrated through comprehensive computer simulations and compared to popular alternatives. The results of these simulations reveal the benefits of sliding mode observation and control for improved ride quality, and should be directly transferable to commercial semiactive vehicle suspension implementations.  相似文献   

10.
Active Suspension Control to Improve Vehicle Ride and Handling   总被引:3,自引:0,他引:3  
In practice most active vehicle suspension work can be traced to two sources, Lotus' modal control and Karnopp's skyhook damper. A model is developed which allows comparison of different active suspension control algorithms. The Lotus modal control algorithm is reviewed, and compared with Karnopp's skyhook damper. It is shown that a tight inner closed loop allows the Lotus algorithm to achieve the inertial damping described by Kamopp for a single comer or quarter car. It is suggested that to achieve simultaneously high inertial damping and good disturbance rejection an inner force loop is desirable. A vehicle control scheme is presented which combines the Lotus modal decomposition with Karnopp's skyhook damper, allowing nearly optimal ride and simultaneously permitting modification of vehicle handling properties.  相似文献   

11.
In this paper, it is aimed to investigate semi-active suspension systems using magnetorheological (MR) fluid dampers for improving the ride quality of railway vehicles. A 17-degree-of-freedom (DOF) model of a full-scale railway vehicle integrated with the semi-active controlled MR fluid dampers in its secondary suspension system is proposed to cope with the lateral, yaw, and roll motions of the car body, trucks, and wheelsets. The governing equations combining the dynamics of the railway vehicle integrated with MR dampers in the suspension system and the dynamics of the rail track irregularities are developed and a linear quadratic Gaussian (LQG) control law using the acceleration feedback is adopted, in which the state variables are estimated from the measurable accelerations with a Kalman estimator. In order to evaluate the performances of the semi-active suspension systems based on MR dampers for railway vehicles, the random and periodical track irregularities are modelled with a uniform state-space formulation according to the testing data and incorporated into the governing equation of the railway vehicle integrated with the semi-active suspension system. Utilising the governing equations and the semi-active controller developed in this paper, the simulation and analysis are presented in Part II of this paper.  相似文献   

12.
Using adjustable shock absorbers within vehicle suspension systems, it is possible to improve ride comfort significantly when a control strategy is applied based on the so-called skyhook principle. However, the drawback is a poorly damped wheel-hop mode which makes the road holding ability worse. Using adaptive semi-active suspension control based on the tire load variations as introduced in this paper, the trade-off between road holding and ride comfort can be relaxed. Implementation of adaptive skyhook control requires the determination of a number of important and difficult to measure states of the vehicle. This can either be accomplished by several sensors and filters or by a state estimator in combination with less sensors and an internal model of the vehicle. Both methods are discussed. Finally some preliminary test results are discussed.  相似文献   

13.
An adaptive sliding controller is proposed in this article to control the active suspension systems of a quarter-car model with hydraulic actuator. The highly nonlinear actuator dynamics is assumed to have some time-varying uncertainties with unknown bounds. Owing to its time-variant nature, traditional adaptive designs are not feasible. As the variation bounds are not given, the conventional robust controllers cannot be applied either. In this article, we use the function approximation technique to represent the uncertainties with finite combinations of some basis functions, and the Lyapunov method is employed to find update laws for the coefficients of the approximating series. The actuator force can track the desired force generated from the skyhook dynamics with ultimately bounded performance. If a sufficient number of basis functions are used and the approximation error can be ignored, asymptotic convergence performance can be proved. If the bound of the approximation error is available, asymptotic convergence of the output error still can be obtained with some modifications of the proposed control law. Simulation results show that the controller proposed can give significant improvement of ride comfort when compared with the performance of its passive counterpart.  相似文献   

14.
Unlike regular automotive vehicles, which are designed to travel in different types of roads, railway vehicles travel mostly in the same route during their life cycle. To accept the operation of a railway vehicle in a particular network, a homologation process is required according to local standard regulations. In Europe, the standards EN 14363 and UIC 518, which are used for railway vehicle acceptance, require on-track tests and/or numerical simulations. An important advantage of using virtual homologation is the reduction of the high costs associated with on-track tests by studying the railway vehicle performance in different operation conditions. This work proposes a methodology for the improvement of railway vehicle design with the objective of its operation in selected railway tracks by using optimisation. The analyses required for the vehicle improvement are performed under control of the optimisation method global and local optimisation using direct search. To quantify the performance of the vehicle, a new objective function is proposed, which includes: a Dynamic Performance Index, defined as a weighted sum of the indices obtained from the virtual homologation process; the non-compensated acceleration, which is related to the operational velocity; and a penalty associated with cases where the vehicle presents an unacceptable dynamic behaviour according to the standards. Thus, the optimisation process intends not only to improve the quality of the vehicle in terms of running safety and ride quality, but also to increase the vehicle availability via the reduction of the time for a journey while ensuring its operational acceptance under the standards. The design variables include the suspension characteristics and the operational velocity of the vehicle, which are allowed to vary in an acceptable range of variation. The results of the optimisation lead to a global minimum of the objective function in which the suspensions characteristics of the vehicle are optimal for the track, the maximum operational velocity is increased while the safety and ride quality measures of the vehicle, as defined by homologation standards, are either maintained in acceptable values or improved.  相似文献   

15.
SUMMARY

Using adjustable shock absorbers within vehicle suspension systems, it is possible to improve ride comfort significantly when a control strategy is applied based on the so-called skyhook principle. However, the drawback is a poorly damped wheel-hop mode which makes the road holding ability worse. Using adaptive semi-active suspension control based on the tire load variations as introduced in this paper, the trade-off between road holding and ride comfort can be relaxed. Implementation of adaptive skyhook control requires the determination of a number of important and difficult to measure states of the vehicle. This can either be accomplished by several sensors and filters or by a state estimator in combination with less sensors and an internal model of the vehicle. Both methods are discussed. Finally some preliminary test results are discussed.  相似文献   

16.
主动汽车悬架的非线性控制   总被引:8,自引:0,他引:8  
刘新亮  张建武 《汽车工程》1997,19(3):175-179
本文采用1/4车模型对天棚阻尼器和主动悬架的动力学性能进行分析,针对执行器的非线性特性,探讨了微分几何法和反馈法线必互法在主动悬架控制中的应用,在系统控制设计中采用了离散滑模法,仿真结果显示非线性控制律能有效地改善主动悬架的隔振特性。  相似文献   

17.
李治国  金达锋  赵六奇  张峻青 《汽车工程》2002,24(5):426-429,450
预测控制(包括轴距时间延迟)具有改善系统动态性能的能力,对性能指标的频率成型则可以改善乘坐舒适性。结合以上两种方法,提出了一种算法用于主动悬架控制策略的设计,并在时域和频域利用此算法对一个五自由度主动悬架车辆模型进行仿真,检验了算法的可行性和控制效果。  相似文献   

18.
Summary This paper presents the recent development on active steering for railway vehicles, and carries out a technical appraisal of different actuation schemes and control approaches. It brings together the latest research activities and findings for the full active steering techniques for rail vehicles with the solid-axle wheelsets, independently-rotating wheelsets and wheel-pairs without axles, but relevant work on passive and semi-active solutions is also briefly described. Potential benefits of the use of a combination of modern control technology and mechatronic approach are evaluated, and in particular solutions for the difficult design trade-off between the stability and the curving performance are presented. Various actuation configurations are discussed, and advantages and drawbacks of those schemes are investigated. The outline design using a number of control methods is analysed, and measurement requirement and state estimation techniques essential for implementation of the active steering schemes are also explored. In addition the issue of safety criticality is highlighted and a possible approach for developing fault-tolerant systems is proposed. Overall the paper provides an authoritative assessment of the major advances in actively-steered wheels and addresses outstanding critical issues.  相似文献   

19.
汽车主动悬架的自校正控制   总被引:17,自引:2,他引:17  
刘新亮 《汽车工程》1998,20(3):165-170
主动悬系统能使车辆的乘坐舒适性和操纵稳定性同时得到改善,其中执行机构和控制算法的优劣决定了该系统的性能。  相似文献   

20.
In this paper, a new non-linear tracking controller for vehicle active suspension systems is analytically designed using an optimization process. The proposed scheme employs a realistic non-linear quarter-car model, which is composed of a hardening spring and a quadratic damping force. The control input is the external active suspension force and is determined by minimizing a performance index defined as a weighted combination of conflicting objectives, namely ride quality, handling performance and control energy. A linear skyhook model with standard parameters is used as the reference model to be tracked by the controller. The robustness of the proposed controller in the presence of modeling uncertainties is investigated. The performed analysis and the simulation results indicate that both vehicle ride comfort and handling performance can be improved using the minimum external force when the proposed non-linear controller is engaged with the model. Meanwhile, a compromise between different objectives and control energy can easily be made by regulating their respective weighting factors, which are the free parameters of the control law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号