首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(接上期) 2.1.2金属土壤腐蚀电化学 在金属土壤腐蚀电化学中我们经常接触到的名词是电解质、电极电位、腐蚀电池等,这正是金属土壤腐蚀电化学中最基本的概念.  相似文献   

2.
长输管道牺牲阳极保护的设计   总被引:1,自引:0,他引:1  
本文阐述了造成埋地管道腐蚀原因的主要三个方面,土壤腐蚀,细菌腐蚀,杂散电流腐蚀。分析表明,土壤对埋地管道的腐蚀主要为电化学腐蚀。  相似文献   

3.
川气东送管道沿途土壤腐蚀性评价   总被引:1,自引:0,他引:1  
可靠的腐蚀评价方法及先进的防腐措施是确保管道安全运行、防止腐蚀泄漏事故的关键。针对川气东送管道距离长、情况复杂的特点,采用室内外实验相结合的方法,对整条管道进行土壤腐蚀评价。通过管道沿线土壤埋片试验、土壤性质分析测试、电化学实验,分析了钢试片的宏观腐蚀产物,测定了主要盐离子的含量,评价了含水量对腐蚀的影响。利用室内外实验相结合的方法对土壤腐蚀方面进行了有效的评价。  相似文献   

4.
埋地钢管的土壤腐蚀速率计算及防腐措施   总被引:1,自引:0,他引:1  
埋地钢管发生泄漏的主要原因为土壤侧的腐蚀.埋地钢管土壤侧的腐蚀主要影响因素包括土壤性质、操作温度、涂层效力、阴极保护和杂散电流.依据API581,综合讨论上述因素的影响因子,并结合相关算例分析了阴极保护对土壤腐蚀速率的影响程度.针对土壤侧的腐蚀,提出了涂层防护和阴极保护的防腐措施.根据土壤腐蚀速率预测出埋地钢管的剩余使用寿命,从而合理安排检验检测时间,保障埋地钢管的安全运行.  相似文献   

5.
(接上期) 2.1.3.4温差原电池对常见的土壤腐蚀而言,大多数金属腐蚀的原因是前述的浓差电池和氧浓差电池,但对于直埋热力管线,温度的存在使问题变得复杂化,我们经常遇到的腐蚀电池就有温差原电池.如图11所示,两个电极是同一种金属,由于环境原因导致一个电极比另一个电极具有更高的温度,通常情况下,具有较高温度的电极将成为阳极.  相似文献   

6.
根据土壤中的含水率和土壤环境中阴离子Cl-、SO2-4、HCO-3、CO2-3的浓度,通过正交设计配置了25种土壤,利用改进的电阻法,测定了X52管材在不同组成土壤中的腐蚀速率.分析了土壤组成对X52管材土壤腐蚀速率的影响.结果表明:土壤含水率是影响X52管材土壤腐蚀速率的主要因素,而且当土壤含水率小于14%时,腐蚀速率随土壤含水率的增大逐渐增大,当土壤含水率超过14%时,土壤腐蚀速率随土壤含水率的增大而下降很快;土壤溶解盐中的阴离子Cl-、SO2-4、HCO-3、CO2-3对X52管材土壤腐蚀速率的作用相对较小.  相似文献   

7.
X70钢作为新型管线钢,目前正大量地应用于输气管道的建设。对X70钢的土壤腐蚀问题进行了实验研究,采用极化曲线、交流阻抗技术对相对含水率在38%-100%(WHC)的青岛滨海土壤中的腐蚀行为进行研究,分析了含水率对土壤腐蚀的影响。结果表明:X70钢在不同含水率土壤中的腐蚀受阴极极化控制。土壤的密实程度和可溶性盐的离子化程度导致不同含水率的土壤腐蚀规律如下:中高含水率对腐蚀速率影响显著,相对含水率小于等于45%时腐蚀速率较小且变化不明显,高于45%时腐蚀速率呈现先迅速升高后降低的趋势,在65%时达到最大;高含水率的土壤中有中间腐蚀产物膜形成。  相似文献   

8.
根据地铁迷流对金属发生电化学腐蚀的机理,研究了钢筋混凝土试件在土壤介质中受外加直流电时的腐蚀产物对混凝土产生挤压应力而引起混凝土开裂破坏的原因及相关因素,从而证实了地铁迷流对隧道衬砌耐久性的严重影响。  相似文献   

9.
辽河特石超稠油输油管线腐蚀预测与评价   总被引:1,自引:0,他引:1  
以辽河油田埋地管道土壤腐蚀实测数据为例,同时引入灰关联分析原理及处理方法来描述土壤腐蚀因素对管道腐蚀的影响程度.通过计算各采样的关联度,可以知道管道的腐蚀轻重情况,沿途中的腐蚀情况为BB03<Z001<Y3<Z010<兴-转<石材市场<Z012.另外,又引用了侵蚀性指数法,通过计算侵蚀性指数来判断腐蚀液(除Z010外)的腐蚀倾向.结果表明腐蚀液有中等侵蚀性.  相似文献   

10.
通过现场埋片和土壤理化性质试验确定了影响川气东送管道腐蚀速率的主要土壤因素,对39个试验点的X70钢质试片的腐蚀数据进行分析,构建了X70钢材土壤腐蚀预测模型,利用该模型在BP神经网络中训练、模拟,并运用MATLAB软件对神经网络进行编程,将预测结果与现场X70埋片腐蚀实验结果对比。结果表明:运用BP神经网络可以建立稳定性好的土壤腐蚀预测模型,预测川气东送管道X70钢材在土壤中的腐蚀速率的准确度达到90%以上。  相似文献   

11.
直埋热力管道土壤腐蚀与防护(一)   总被引:2,自引:0,他引:2  
近年来由于城市建设、环境保护、节约能源的需要,热力管道直埋技术得到越来越多的应用。随着埋入地下 管道运行时间的推移,土壤腐蚀的问题也日益受到人们的重视。本文根据土壤腐蚀的原理,探讨了直埋热力管道土壤腐蚀的特点,并针对性地提出了直埋热力管道土壤腐蚀预防中应注意的问题及解决的方法。本讲座共分为四个部分:关于土壤腐蚀;埋埋热力管道土壤腐蚀的特点;直埋热力管道土壤腐蚀的防护;土壤腐蚀性的分级与测定。全文将分期连续发表。本文作者愿与各位同行就直埋热力管道土壤腐蚀的问题进一步进行探讨。  相似文献   

12.
为研究某油田长输管道土壤腐蚀性,利用BP神经网络、遗传算法并借鉴相关标准的做法,选取土壤的自然电位、含水量、Cl~-质量分数、SO_4~(2-)质量分数、土壤电阻率、氧化还原电位、pH值作为评价指标,构建土壤腐蚀性GA-BP神经网络评价模型。结果表明:该模型在土壤腐蚀性评价中适用且更准确地反映了土壤的腐蚀特性,有助于掌握长输管道的土壤腐蚀状况。  相似文献   

13.
以东北输油管道为例,分析了埋地输油管线腐蚀特点及原因,认为管道的腐蚀主要是由于防腐层老化、剥离,导致出现阴极保护死区,该部位在土壤中氧浓差及细菌的作用下发生了电化学腐蚀;另外,管体表面膜不完整、阴保系统本身缺陷等也最终会加剧管道的腐蚀.提出了防腐层修复、管体补强(开挖技术如套袖补强、非开挖修复如内衬法等)的管道修复工艺要点及适用情况.  相似文献   

14.
金属管道材料与周围介质发生化学、电化学或物理作用成为金属化合物,造成管道金属体受损,甚者可能造成管道穿孔,使油气发生泄漏,影响正常输油气生产,造成环境污染等事故。文中介绍了长输油气管线外腐蚀类型,对外腐蚀缺陷的定义及现行的输油气管道外腐蚀缺陷修复的主要技术做了说明,对各种修复技术的优缺点做了比较,以表格的形式对不同的外腐蚀缺陷类型的修复方法做了汇总,并通过实例说明了部分方法在管线外腐蚀缺陷修复中的应用。  相似文献   

15.
通过对海军91043部队输油管线沿线土壤腐蚀性和管线腐蚀状况的分析,设计了牺牲阳极的阴极保护方法。保护电位测试结果表明:输油管线阴极保护后,阴极电位分布均匀,阳极保持较负的工作电位,使管线处于良好的保护状态,抑制了土壤腐蚀。  相似文献   

16.
为了验证非接触式磁应力检测技术在埋地管道腐蚀评价中的有效性,分析了金属磁记忆原理、非接触式磁应力检测程序,对实际检测效果进行开挖验证,对检出缺陷评定结果与超声波测厚数据进行比对。结果表明:非接触式磁应力检测技术可以检测出埋地管道的金属腐蚀和机械损伤缺陷,通过磁异常综合指数对检出缺陷的等级划分与超声波测厚结果一致。可以采用非接触式磁应力检测技术,在不开挖状态下对埋地管道进行腐蚀检测,并给出与实际相符的腐蚀评价。  相似文献   

17.
为确认管道内检测发现的内部金属损失是否为内腐蚀缺陷并分析内腐蚀成因,基于管道完整性管理的大数据分析理念,将内检测数据、内腐蚀发生位置数据、开挖直接检测数据、腐蚀形貌3D建模分析数据、内腐蚀产物理化分析成果、超声导波监测数据等进行整合并分析了内腐蚀发生的原因。分析结果表明:内腐蚀是由于管道内壁与H_2S、CO_2和管道内部的水发生电化学腐蚀而形成的。依据腐蚀成因,开展了生产清管作业内腐蚀控制,并通过对比多轮超声导波监测数据,确认管道清管对内腐蚀控制的有效性。介绍了开展管道内腐蚀研究的重要性及研究方向。  相似文献   

18.
高含硫气田集输管线腐蚀因素分析   总被引:1,自引:0,他引:1  
川东北产天然气硫化氢含量高,易使集输管线产生硫化物应力腐蚀开裂( SSC)、氢诱发裂纹(HIC)以及电化学腐蚀,影响集输管线的安全运行.通过对腐蚀因素(如土壤盐分、土壤电阻率、输送介质H2S含量、氯离子、CO2含量、输送压力、管材因素等)进行研究,并利用腐蚀分析软件OLI Corrosion Analyzer对川东北某...  相似文献   

19.
针对KRC延迟焦化装置电脱盐换热器严重腐蚀问题,通过对其工艺介质分析、腐蚀形貌分析、腐蚀产物X射线能谱分析,认为换热器壳程主要是因为新鲜水中含有泥沙等杂质,在换热器壳程形成软垢和细菌,造成垢下、垢外介质成分、含量、电化学电位差异,形成电化学腐蚀微电池,发生垢下腐蚀和细菌腐蚀,严重的造成管道穿孔;换热器管程则是因为注脱钙剂期间存在一定程度的脱钙剂酸性物质造成的均匀腐蚀.对此问题,提出了对应的防腐措施.  相似文献   

20.
文中在调研中石化塘燕复线Φ711段管道的基础上,从外腐蚀、内腐蚀两个方面分析了该管道存在的腐蚀因素,证实了电化学、土壤、散杂电流、水、介质等因素的腐蚀作用,并根据实际需要,提出内外腐蚀两方面的防护对策和预防措施,为管道完整性管理提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号