首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
活性粉末混凝土抗拉性能研究   总被引:4,自引:0,他引:4  
通过不同钢纤维含量活性粉末混凝土的拉伸性能试验,测定活性粉末混凝土的劈裂抗拉强度、轴心抗拉强度及轴心受拉应力-应变全曲线.研究钢纤维体积率对活性粉末混凝土劈裂抗拉强度、轴心抗拉强度的影响规律.研究表明,随着钢纤维掺量的增加,活性粉末混凝土的劈裂抗拉强度、轴心抗拉强度呈线性增大规律;给出活性粉末混凝土轴心抗拉强度和劈裂抗拉强度的关系;提出活性粉末混凝土轴心受拉应力-应变全曲线的数学模型,并根据试验结果确定模型参数.研究成果可为活性粉末混凝土在结构中的应用提供依据.  相似文献   

2.
不同钢纤维含量RPC材料受压力学性能研究   总被引:5,自引:1,他引:4  
通过单轴受压强度试验和变形特性试验,研究不同钢纤维体积含最活性粉末混凝土的基本力学性能与本构关系.研究结果表明:纤维体积含量在1.50%~1.75%之间变化时,活性粉末混凝土的轴心抗压强度和峰值应变无明显变化,当纤维体积含量超过1.75%后,轴心抗压强度和峰值应变明显提高;活性粉末混凝土的受压破坏过程包括裂缝稳定扩展、裂缝失稳扩展、多条裂缝贯通和纤维粘脱4个阶段.结合试验曲线,推导出不同钢纤维体积含量活性粉末混凝土统一的单轴受压本构方程.  相似文献   

3.
针对曲线梁的几何特征,根据Timoshenko曲梁理论,提出每结点有6个自由度的三维曲梁单元.对于截面的内力计算,采用钢筋混凝土分块组合模型,在混凝土开裂前按线弹性理论计算,而对于混凝土开裂后,则引入钢筋混凝土软化桁架理论,提出混凝土开裂后截面内力重分布的计算方法.该方法充分考虑开裂后混凝土拉应力的贡献及箍筋的作用,从而建立预应力混凝土曲线梁非线性有限元分析模型,并编制计算程序.用该程序对一座两跨预应力混凝土曲线连续试验梁进行计算,并与试验结果进行比较,理论值与试验值符合良好,从而验证该模型是可靠的.  相似文献   

4.
研究目的:现行规范中钢纤维混凝土裂缝宽度影响系数取值过于保守,由其制成的构件或结构应用于交通隧道工程中不具有较好的经济性,而规范规定其值宜通过试验确定。基于此,本文通过构件试验及数值试验,得到钢纤维混凝土裂缝宽度影响系数随裂缝宽度的变化曲线,结合可靠度及概率论,通过数据统计分析得到钢纤维混凝土裂缝宽度影响系数值。研究结论:(1)钢纤维能够有效降低混凝土构件裂缝宽度,相对于同一配筋形式下的钢筋混凝土构件,裂缝宽度降低50%以上;(2)通过纯弯梁和偏压柱的构件试验及数值试验,计算得到钢纤维混凝土裂缝宽度影响系数为0. 42;(3)裂缝宽度影响系数随构件横截面尺寸的增大而增大、随裂缝宽度的增大而减小;(4)本研究成果可为钢纤维混凝土裂缝宽度影响系数的进一步研究提供借鉴。  相似文献   

5.
活性粉末混凝土梁受弯非线性全过程分析   总被引:1,自引:0,他引:1  
采用活性粉末混凝土(RPC)材料的单轴拉压应力—应变关系,考虑RPC梁受力特性,以平截面假定及数值积分法为基础,根据内力平衡关系编制RPC梁的截面计算分析程序,计算其弯矩—曲率关系曲线。在此基础上利用共轭梁法,进一步得出RPC梁的荷载—挠度关系曲线,获得任意一级加载后的任意节点的位移,从而达到对RPC梁进行全过程分析的目的。用7组RPC梁的三分点破坏加载试验对数值计算结果进行验证,试验结果表明:RPC梁受力全过程中平截面假定仍然适用,数值计算出的配筋PRC梁的荷载—挠度全曲线、破坏形态以及极限荷载与试验结果吻合良好;无筋RPC梁试验结果均小于理论计算结果,且相差较大,无筋RPC梁的最终破坏模式为单一裂缝的脆性破坏。建议设计RPC梁时,在受拉区配置一定量的抗裂分布钢筋。  相似文献   

6.
对于含切口和断裂过程区简支梁受均布荷载作用的问题,选择弯矩作用下对称边裂纹的无限大板、均布荷载作用下的简支梁、切应力作用下的半无限大板、拉应力作用下的无限大板4种基本问题的应力函数叠加求解。基于"Duan and Nakagawa's Model",通过数学解析法和选点法得到了含断裂过程区简支梁的全场解析解。分析对比了无裂缝简支梁和断裂过程区内聚力呈水压力型、恒定型分布或权函数为一次型时简支梁的拉应变软化曲线和自振特性,发现内聚力呈水压力型分布与一次权函数下拉应变软化曲线有相似的变化趋势;无裂缝简支梁自振频率最高,内聚力恒定型次之,水压力型和一次权函数型时最低。  相似文献   

7.
级配钢纤维活性粉末混凝土的动态拉伸性能的试验研究   总被引:1,自引:0,他引:1  
采用分离式Hopkinson压杆(SHPB)对直径为70 mm的圆柱体试件的动态拉伸性能进行研究,得到了不同应变率下的混凝土劈裂拉伸强度和拉伸应力-时间曲线,并与静态劈裂拉伸强度进行了对比。根据试验结果,讨论了含不同种类钢纤维的活性粉末混凝土的动态拉伸性能,以及3种钢纤维级配下的钢纤维活性粉末混凝土的动态拉伸性能;总结了级配钢纤维活性粉末混凝土的应变率效应,以及影响钢纤维混凝土动态拉伸性能的因素。  相似文献   

8.
超高性能混凝土(Ultra-high Performance Concrete, UHPC)在铁路桥梁中有着广阔的应用前景,UHPC梁的抗剪承载力计算是UHPC结构设计的重要部分。针对钢筋UHPC矩形梁,利用数值分析方法,分析剪跨比、纵筋配筋率、箍筋配筋率、钢纤维掺量等各因素对梁抗剪承载力的影响;在传统桁架-拱模型的基础上单独考虑钢纤维的增强作用,把钢纤维作为桁架模型中的受拉斜腹杆并根据厚壁圆筒原理推导钢纤维提供的抗剪承载力,结合UHPC的材料特征和UHPC矩形截面构件的抗剪设计特点,建议斜压腹杆倾角和软化系数等关键参数的取值,提出能考虑钢纤维掺量和几何特征的UHPC矩形梁抗剪承载力计算公式;以国内外147根UHPC矩形梁的抗剪试验结果验证计算方法的正确性和适用性。结果表明:建议的UHPC矩形梁抗剪承载力公式计算结果与实测值吻合较好,相比常用的国外UHPC结构设计规范建议方法,方法得到的结果与实测值更为接近;钢纤维对梁的抗剪承载力有显著贡献;纤维掺量和纤维几何特征对梁的抗剪承载力有明显影响。  相似文献   

9.
为了研究双线混凝土U型梁的剪力滞效应,对U型梁截面进过合理简化,选取轴力自平衡的余弦函数定义了翘曲位移函数.在考虑剪滞效应和剪切效应的基础上,构建了双线混凝土U型梁的总应变能函数.利用势能驻值原理,推导出了简支、悬臂和连续双线混凝土U型梁分别在均布荷载和集中荷载作用下的剪力滞系数解析解.以某实际工程双线混凝土U型梁为例...  相似文献   

10.
应用Muskhelishvil应力函数全场解,根据幂指数函数描述的混凝土拉应变软化模型导出断裂过程区(FPZ)过程值及临界值的解析表达式,分析了在最大拉应变强度理论下软化指数对FPZ过程值及临界值的影响。结果表明:混凝土FPZ过程值及临界值都随着软化指数的增加而增加,不同泊松比下变化规律相近。  相似文献   

11.
活性粉末混凝土的常规三轴压缩性能试验研究   总被引:1,自引:0,他引:1  
通过活性粉末混凝土在不同围压下的常规三轴压缩试验,研究活性粉末混凝土的破坏形态、强度特征和变形规律。结果表明:围压≤60 MPa时,活性粉末混凝土的常规三轴压缩破坏形态主要表现为劈裂破坏,围压为65MPa时,破坏表现出挤压流动特征;在不同的围压条件下,活性粉末混凝土试件的应力—应变曲线的形状基本相似,均经历压密、弹性、应力软化和荷载稳定下降4个阶段;活性粉末混凝土的三轴抗压强度、弹性模量和轴向峰值应变均随围压的增大而近似线性增长,但活性粉末混凝土的三轴抗压强度随围压增长的速度较普通混凝土缓慢;在到达峰值应变之前,活性粉末混凝土的割线泊松比表现出随围压的增大而减小的规律,此阶段的体积应变表现为压缩。  相似文献   

12.
为了准确计算钢筋钢纤维混凝土梁斜截面抗剪承载能力,设计3组(共9根)不同钢纤维掺量的混凝土梁试验方案。通过对比分析试验结果、我国规范和欧洲规范设计理论,得到以下结论:2种规范进行构件抗剪承载力计算时侧重点有所不同,对于本次试验中的钢筋钢纤维混凝土梁,2种规范设计值相差不大,设计误差值均在-20%左右,具有充足的安全保证。根据本次试验结果分析,我国规范的设计误差主要是因为钢纤维增强系数取值偏小导致的,建议针对钢丝切断异形钢纤维的影响系数βv进行更为广泛深入的试验研究。  相似文献   

13.
CFS-AFS混合加固钢筋混凝土梁受拉面应力分析   总被引:1,自引:0,他引:1  
针对碳纤维布和芳纶纤维布混杂加固钢筋混凝土梁的一种新型加固方法,通过建立不同材料本构方程,对单层及双层加固模型做了非线性有限元数值计算。分析了在不同加固形式下,加固梁受拉区混凝土拉应力及混杂纤维布抗拉应变分布情况,并将计算结果与试验结果进行了对比。结果表明,非线性有限元计算与试验吻合较好,混杂加固具有良好的混杂效应,碳纤维布高强度的特点得到充分发挥。  相似文献   

14.
分析归纳了钢纤维混凝土的基本特性,对素混凝土、钢筋混凝土以及钢纤维混凝土衬砌的变形特性进行了比较分析;通过模型试验,研究了钢纤维的阻裂作用,提出了考虑拉力软化关系的钢纤维混凝土衬砌结构的破坏模式和承载能力分析方法。其研究成果可供钢纤维混凝土衬砌设计参考和利用。  相似文献   

15.
城市轨道交通 U 型梁沿顺桥向和横桥向的受力存在差异,而按现有设计规范 U 型梁桥取 1.40 的动力系数会导致材料浪费。针对该类结构的双向受力特征,以南京地铁 S6 号线 U 型梁为工程实例,建立车桥耦合振动模型;通过对比测试和计算结果,验证了所建模型的有效性;并通过改变车辆速度和编组,分析不同响应的动力系数。研究结果表明:梁底只承受纵向拉应力,但同一截面内却同时存在横向拉、压应力;挠度、纵向应力和横向应力的动力系数最大值分别为 1.231、1.216 和 1.362,分别出现在 6 车满员和 6 车定员编组的工况中;在确定单线 U 型梁的动力系数时,应该考虑列车编组的影响,并根据受力方向对动力系数值加以区别,建议在计算挠度和纵向应力时取 1.30,而在计算横向应力时仍取 1.40。本研究旨在提出 U 型梁动力系数的合理取值,并为结构优化提供参考。  相似文献   

16.
隧道围岩与支护结构稳定性问题一直倍受岩土工程界关注。采用室内试验方法研究煤系岩层高岭石峰值及峰后力学特性,基于Mohr-Coulomb强度准则的岩石峰后应变软化理论,构建敖包梁隧道三维有限差分数值模型,计算隧道围岩变形特征曲线及纵剖面变形曲线,结合收敛-约束法分析隧道围岩与支护结构安全稳定性,通过现场监测,验证数值模型及计算方法的合理性。研究表明:采用理想弹塑性模型计算的隧道围岩安全系数小于应变软化模型的计算结果;分析现场监测数据可知,考虑应变软化的围岩与支护结构相互作用关系更符合工程实际情况,采用收敛-约束法计算隧道安全稳定性更加直观。  相似文献   

17.
利用超高性能混凝土设计建造桥梁可使结构尺寸更加纤细,能将48 m跨度简支梁质量控制在约850 t以实现整孔运架。本文对48 m跨度超高性能混凝土简支梁设计方案进行静力、动力计算及稳定性分析,并通过与模型梁试验结果的对比,验证超高性能混凝土箱梁设计的合理性及结构受力特征。研究结果表明:推荐的48 m跨度超高性能混凝土简支梁设计方案可实现整孔运架;所采用的设计参数和计算方法合理,开裂前超高性能混凝土梁为弹性工作状态,理论计算结果与试验结果较吻合,破坏荷载作用下梁体安全;超高性能混凝土塑性修正系数应依据具体试验取值,无试验数据时可采用本文试验数据1. 5。  相似文献   

18.
采用纤维增强复合材料(FRP)片材加固钢筋混凝土梁可以大幅度提高其抗弯承载力,但其抗变形能力改善却并不显著。基于平截面假定,将FRP片材换算为受拉钢筋,推导换算后的截面有效高度增大系数表达式,通过有效惯性矩法分析得到FRP片材应变与实配受拉钢筋应变比值的变化规律。按照刚度解析法的思路,建立FRP片材加固的钢筋混凝土梁的抗弯挠度计算方法,得到的刚度计算公式在FRP加固量为零时可退化为GB50010—2010《混凝土结构设计规范》中普通钢筋混凝土受弯构件的抗弯刚度计算式。通过国内外相关试验梁数据验证表明,对于FRP加固的钢筋混凝土梁,采用本文计算方法得到的挠度计算值与试验值吻合较好,可供实际工程设计参考。  相似文献   

19.
为探究钢纤维混凝土管片结构力学性能,对主筋用量不削减、掺入30 kg/m3钢纤维的钢筋钢纤维混凝土管片结构开展极限承载力试验。管片错缝拼装形成试验结构,通过环向24组千斤顶模拟水土作用对结构施加荷载,通过逐步减小腰部荷载模拟侧部卸载工况,直至结构破坏。在卸载工况下,结构每环在0°,90°,180°或270°等弯矩较大位置附近的3处纵缝先后发生混凝土压裂和压碎,最终在0°或180°附近管片钢筋屈服、混凝土压碎,结构形成4个塑性铰破坏。根据试验测试的应变数据对结构内力进行计算,分析钢纤维混凝土对结构刚度和承载力的提升作用。研究结果表明,相比普通混凝土结构,在刚度方面,管片初裂时,钢纤维混凝土管片刚度提升6.91%,当裂缝宽度超过0.2 mm时,钢纤维混凝土管片刚度提升3.45%,提升作用降低的原因是随着荷载增大,钢筋应力逐渐增加,钢筋对管片刚度的作用增大而钢纤维混凝土对刚度作用基本不变;接头混凝土压裂时,钢纤维混凝土接头刚度提升18.7%。在承载方面,钢纤维混凝土管片极限承载力提升6%,接头极限承载力提升3%,整体结构极限承载力提升4.2%。并且,由于钢纤维混凝土对接...  相似文献   

20.
超高性能混凝土梁正截面承载力   总被引:3,自引:0,他引:3  
对超高性能混凝土(UHPC)的单轴受压应力一应变全曲线和UHPC梁的受力性能进行试验研究及理论分析.试验结果表明:UHPC具有良好的受压变形性能,其应力峰值点应变达0.0035,极限应变可达0.004 5;UHPC梁具有良好的受拉变形能力及裂缝分布,其极限变形达梁跨径的1/30.1~1/71.8,梁体的混凝土应变基本符合平截面假定.基于UHPC的初裂抗拉强度得到的UHPC梁截面塑性影响系数为1.53.并据此建立UHPC受弯构件的开裂弯矩计算公式和极限承载能力计算公式,预测UHPC梁的破坏模式、开裂弯矩以及极限弯矩.计算结果具有较高的精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号