首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
将存在裂隙的岩体视为等效连续介质,建立海底隧道稳定渗流分析计算模型,并对渗流场相关特性进行探讨;结合青岛胶州湾海底隧道工程计算注浆圈对渗流场影响.结果表明:海底隧道防排水应采取“以堵为主,限量排放”的原则;注浆圈堵水效果与其厚度相关,且注浆圈厚度与其渗透系数成正比.但当围岩渗透系数与注浆加固圈渗透系数之比大于100,且注浆圈厚度不小于10 m时,注浆圈渗透系数、注浆圈厚度对隧道涌水量均影响不大;隧道涌水量和控制排水量之差越大,衬砌外水压力越大;为减少涌水量,可以采用注浆圈封堵地下水渗流通道,衬砌外水压力将显著降低.当处于自由排水阶段时,衬砌不承担水压力,隧道涌水量与控制排水量相等.  相似文献   

2.
围岩的注浆效果直接影响到海底隧道的施工安全。采用数值计算方法对固定水头的海底隧道在不同注浆圈厚度、注浆圈渗透系数以及排水方式下,隧道的涌水量和衬砌外水压力进行计算与分析。并将数值模拟的结果与轴对称解析解结果进行对比,结果表明:(1)不同的隧道防排水方式对衬砌外压有着明显的影响;(2)注浆圈的径向加固范围对隧道涌水量和衬砌外水压力产生一定的影响,但其效果并不明显;(3)注浆圈的渗透系数对隧道的涌水量和衬砌的外水压力有较大影响。  相似文献   

3.
山岭隧道高压富水断层破碎带注浆施工技术   总被引:7,自引:1,他引:7  
研究目的:山岭隧道断层破碎带地层岩性复杂,围岩破碎,在地下水补给源充分的条件下,极易发生高压突水等地质灾害,严重影响施工安全和进度。为了有效地预测和治理隧道断层破碎带涌水,防止发生隧道突发涌水等地质灾害,需要对断层破碎的地质特征以及处理措施进行深入研究。研究结论:隧道注浆堵水的方式一般要结合现场开挖揭示围岩情况和前方地层超前预报结果合理选择。隧道高压富水断层破碎带应采取超前预注浆堵水措施,以达到降低围岩的渗透系数,减少地下水流失的目的。注浆结束后应采取施作检查孔等方法对注浆效果进行检查和评定。  相似文献   

4.
研究目的:隧道开挖扰动对渗透系数的改变及扰动区的非达西渗流是影响隧道涌水预测精度的重要因素,为提高涌水预测精度,构建含扰动区的隧道涌水简化计算模型,基于地下水力学理论、非达西定律及线性叠加原理推导涌水量及结构外水压力计算表达式,并进行退化分析,后对特征参数进行敏感性研究,最后通过与现场实测数据对比检验构建模型的合理性及公式推导的正确性。研究结论:(1)扰动区厚度及渗透系数的增加,减弱了围岩的阻水能力,导致隧道涌水量增加,提高施工技术水平,降低扰动程度与扰动范围可减弱扰动区围岩渗透系数的变异性,对隧道运营期阻水有积极作用;(2)适当提高注浆圈的抗渗性能可有效降低隧道涌水量,但随注浆圈抗渗性能的增加,对隧道涌水量降低的作用逐渐趋于平缓;(3)考虑扰动区对围岩渗透系数的改变及非达西渗流影响时,涌水量预测误差可由8.9%降低为4.2%;(4)本研究成果可为考虑开挖扰动对隧道涌水影响的研究提供理论指导。  相似文献   

5.
青岛地铁13号线井冈山路站至嘉年华站区间隧道敷设在近海区域。该区域围岩较为破碎,裂隙水与海水连通,隧道开挖后预测最大单位涌水量达31.2 m3/(m·d),故防水问题十分突出。借鉴类似工程,确定区间隧道初期支护单位渗水量允许值为0.3 m3/(m·d);采用隧道渗水量简化模型计算不同水头高度、围岩渗透系数、注浆圈厚度与渗透性对初期支护渗水量的影响;基于施工空间和效益对注浆圈厚度的限制,确定不同水头高度和围岩渗透性条件下的注浆圈厚度和渗透系数的合理组合;通过现场初期支护渗水量测试,验证了注浆圈参数的合理性。结果表明:Ⅲ、Ⅳ、Ⅴ级强风化—微风化等级岩层中,注浆圈合理厚度分别为3.75~6.00 m、3.5~6.0 m和0.75~2.75 m,合理渗透系数分别为岩层的0.5%~1.2%、1%~2%和2%。  相似文献   

6.
针对西部山区深埋隧洞施工涌水难以预测,严重影响施工安全与进度难题,运用现场调查、数值仿真以及现场试验等方法,在对锦屏二级水电站辅3#支洞断面涌水条件进行充分分析的基础上,构建了深埋高渗压隧洞涌水仿真模型并确定了模型参数及边界条件。计算结果表明,当隧洞未注浆时隧洞边墙底部水压力作用系数较大,为隧洞渗水较为严重区域,通过预注浆加固可以降低围岩的渗透系数,通过增大隧洞注浆圈厚度可使注浆圈区域围岩渗透系数减小,从而减小隧洞涌水。  相似文献   

7.
隧道衬砌水压力荷载及内力研究   总被引:4,自引:4,他引:0  
通过轴对称解析计算和有限元数值计算隧道在不同衬砌渗透系数、不同注浆圈厚度、不同衬砌厚度条件下,衬砌背后的水压力、流量及衬砌内力,分析影响水压力的因素和水压力对衬砌内力的影响,轴对称解析计算和有限元数值计算结果显示水压力和流量十分接近。衬砌不透水时,水压力荷载系数不折减;在控制排水的条件下,调整衬砌渗透系数、注浆半径和衬砌厚度可以改变水压力、流量和衬砌内力。设计时正算水荷载,施工时通过监测流量反算水荷载,对水荷载设计进行检验和修正。  相似文献   

8.
基于等效周长法研究隧道衬砌水压力荷载及内力   总被引:1,自引:0,他引:1  
为研究方形隧道断面衬砌水压力及内力,利用等效周长替代法,将方形隧道断面转变成圆形隧道断面,并运用轴对称解析法与有限差分FLAC3D分别计算在不同衬砌渗透系数、不同注浆半径和不同衬砌厚度情况下,隧道衬砌水压力、渗透量、内力、偏心距以及安全系数。结果表明:轴对称解析法的渗透量和水压力与有限差分数值计算法的很接近;在不透水情况下,水压力不进行折减;通过控制排水、减小衬砌渗透系数、适当增大围岩注浆或适当增大衬砌厚度可以调节衬砌水压力、偏心距与安全系数;衬砌厚度对边角处安全系数影响大;以设计水荷载为正算,施工监测水压力为反算,在施工过程中,检验并修正水荷载。  相似文献   

9.
海底隧道涌水量的预测及其应用   总被引:1,自引:0,他引:1  
海底隧道深埋于海水以下,处于高水压富水区,涌水是海底隧道的最大威胁。涌水量预测是海底隧道防排水设计和施工措施制定的依据。采用理论分析方法,推导了均质围岩中海底隧道注浆圈外表面、衬砌外水压力及涌水量的理论解析公式,并分析了涌水量与各量值之间的关系。通过对地下水渗流场数学模型研究,采用等效连续介质模型用数值方法分析了隧道渗流场的分布,计算出海底隧道的每延米涌水量,并与理论解析解进行了对比分析。结果表明:海底隧道的涌水量不仅与围岩和注浆圈的渗透系数的比值关系密切,而且还与隧道的半径、远场水压力、注浆圈的半径有关;数值计算所得结果与理论解析公式计算得到的涌水量基本一致;为了确保海底隧道施工及运营的安全,应采取“以堵为主,限量排放”的治水方案。  相似文献   

10.
考虑水荷载作用的铁路隧道衬砌结构设计   总被引:3,自引:1,他引:2  
采用室内模型试验方法,通过改变围岩注浆圈模拟介质的渗透系数,进行10组铁路隧道衬砌结构的水荷载折减系数测试试验,研究水荷载折减系数与注浆圈综合渗透系数的关系。试验结果表明,当围岩注浆圈渗透系数小于10-5cm.s-1时,水荷载折减系数取0~0.3为宜;反之,取值为0.3~1。按考虑水荷载和不考虑水荷载两种受力模式对隧道衬砌结构进行计算分析结果表明,存在较大水荷载作用的隧道衬砌结构设计不宜套用标准图,建议采用钢筋混凝土圆形衬砌结构。  相似文献   

11.
水底隧道复合式衬砌水压力影响因素分析   总被引:6,自引:5,他引:1  
富水量较大的水底隧道,隧道防排水系统对于控制隧道涌水量和衬砌外水压力十分重要。采用数值计算方法,研究固定水头下水底隧道不同注浆参数、衬砌渗透系数及隧道控制排水量对衬砌水荷载的影响,并与轴对称解析解结果进行对比验证。研究结论:(1)渗透系数增加和注浆圈厚度减小都致使衬砌外水压力的增加;(2)初衬渗透性的变化对初衬外水压力的影响十分显著;(3)数值解与解析解的结果相差不大,非圆形隧道截面可利用等效半径求解衬砌外水压力和隧道涌水量的解析解,并用于隧道防排水的初步设计;(4)隧道注浆圈参数和初衬渗透系数一定时,增大控制排水量有利于减小二衬背后外水压力。  相似文献   

12.
基于流固耦合作用的海底隧道初期支护安全影响因素分析   总被引:1,自引:1,他引:0  
以青岛海底隧道试验段为工程背景,基于流固耦合理论对海底隧道初期支护安全性的影响因素进行分析,结论表明:(1)注浆加固显著改善了洞周土体强度和整体性,塑性区范围得到有效控制;(2)注浆加固优化了支护结构的受力,随着加固圈厚度的增加,洞周位移出现不同程度的衰减,加固圈厚度对减小水压的贡献依次为:拱顶拱腰拱脚仰拱;(3)随着加固圈渗透系数的增大,洞周水压力随之增大;(4)在流固耦合作用下,仰拱处的土压力远大于其他部位;(5)现行支护参数条件下,海底隧道初期支护结构满足安全性要求,现场实测与数值计算基本相符。  相似文献   

13.
基于流固耦合理论下穿库区隧道围岩稳定性分析   总被引:1,自引:0,他引:1  
以某下穿库区铁路隧道为依托工程,对比分析有无渗流场作用和不同水深条件下,隧道结构应力变化规律以及围岩变形、塑性区和渗流场的变化特性,同时还考虑隧道加固圈厚度和渗透系数对围岩稳定性的影响。研究结果表明:地下水渗流场对围岩变形影响较大,不仅能引起大范围的库底沉降,而且能增大隧道拱顶和拱腰的位移,并且能够减小仰拱的隆起量以及加剧围岩塑性区的范围;隧道的开挖能够对地下水孔隙水压力的分布形成明显的扰动,并且在两拱脚处渗流速度最大,最大塑性区位于横向临时支撑处;注浆加固圈能够改善围岩的受力,隧道最优注浆圈厚度在5m,并且当渗透系数小于围岩渗透系数的1/50时注浆圈加固效果不再明显。  相似文献   

14.
高水压岩质盾构隧道二次注浆压力的控制   总被引:4,自引:2,他引:2  
采用梁—弹簧模型模拟盾构隧道管片衬砌结构,针对不同的二次注浆方式,包括注浆孔的布置、充填空隙的长度和注浆压力,进行力学分析。结果表明:不同注浆方式下管片结构的力学特征不同,在注浆压力及所填充空隙长度相同的条件下,不对称注浆对管片结构的受力最不利;在注浆方式相同、注浆压力和所充填空隙长度不同的条件下,管片结构的内力和变形形状相同,但内力和变形的大小不同,随着注浆压力和所充填空隙长度的减小,管片结构的内力和变形减小。在岩质盾构隧道施工中,二次注浆所充填的空隙长度是不确定的,故从安全出发,最大二次注浆压力应控制在0.6 MPa以内,注浆压力的下限值可由能注入浆液进行控制。  相似文献   

15.
深埋山岭隧道帷幕注浆段衬砌外水压力研究   总被引:2,自引:2,他引:0  
通过建立深埋山岭隧道的渗流模型,分析外水压力对支护体系的荷载影响,推导出帷幕注浆段衬砌外水压力的计算公式以及隧道内最大涌水量公式,并就理论公式结合工程实际情况展开探讨。同时,对太行山隧道帷幕注浆段外水压力进行现场测试。测试数据表明,由于监测时间较短、测点选择等原因,虽然帷幕注浆段衬砌外水压力较小,但考虑到后期外水压力的增加,为确保隧道运营期安全,需加强高压富水段外水压力持续监测。  相似文献   

16.
盾构隧道作为一种复杂的三维线性地下结构,容易受围岩特性不均等因素影响产生不均匀变形,引发结构局部破坏等病害。为研究双层衬砌盾构隧道在运营过程中的纵向力学行为,结合武汉地铁8号线越江隧道工程,建立纵向三维壳-弹簧力学分析模型,结合工程实际探讨二次衬砌厚度对盾构隧道双层衬砌力学性能的影响,以期获取合理的二次衬砌厚度取值。研究结果表明:(1)盾构隧道双层衬砌结构的纵向等效弯曲刚度随二次衬砌厚度增加呈线性增加;(2)施作二次衬砌可降低隧道纵向不均匀沉降量及管片间的错台量,二者随二次衬砌厚度增加而减小,但幅度不大;(3)在隧道纵向出现极端不均匀变形条件下,施作二次衬砌会导致位移突变点附近部位的管片局部内力及环缝张开量增大;(4)综合分析盾构隧道管片衬砌变形及受力,同时考虑工程造价和二衬是否设置配筋等因素,对于直径12 m级盾构隧道,其二次衬砌厚度建议取20~35 cm。  相似文献   

17.
为了研究寒区隧道衬砌背后积水位置不同时结构的受力变化规律和破坏形式,进行冻胀力的室内模型试验。模型试验采用不同水囊大小和分布位置来模拟衬砌背后积水情况,通过模型试验箱外界环境整体降温和隧道底部局部降温的方式,模拟隧道外界的低温环境。试验结果表明:衬砌背后冻胀力在拱顶处较小,在边墙和拱脚处较大;在相同的冻胀压力作用下,拱顶处更容易破坏。最后采用数值计算,对比分析围岩注浆前后3种试验工况下隧道衬砌结构的可靠度。结果表明:仅靠提高衬砌结构的厚度和强度来预防或消除衬砌结构冻害的方法是不可取的,在富水区的寒区隧道采用围岩注浆加固具有较好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号