首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reporter: Please say something about the entire structure of Chinese auto industry after the WTO entry, and what do you think it should do to cope with the new challenges? Zhang: This is an old question we have talked about for years. Now China is already an official member of the WTO and what we discussed before should become specific policies or measures.  相似文献   

2.
The goal of this paper is to determine how the geometry of the vehicle’s frontal profile is influencing the pedestrian’s head accelerations (linear and angular) in car-to-pedestrian accidents. In order to achieve this goal, a virtual multibody dummy of the pedestrian was developed and multiple simulations of accidents were performed using vehicles with different frontal profile geometry, from different classes. The type of accidents considered is characteristic for urban areas and occur at relatively low speed (around 30 km/h) when an adult pedestrian is struck from the rear and the head acceleration variation are the measurement of the accident severity. In the accident simulation 3D meshes were applied on the geometry of the vehicles, in order to define the contact surface with the virtual dummy, similar with real vehicles. The validation of the virtual pedestrian dummy was made by performing two crash-tests with a real dummy, using the same conditions as in the simulations. The measured accelerations in the tests were the linear and angular accelerations of the head during the impact, and these were compared with the ones from the simulations. After validating the virtual model of the car-to-pedestrian accident, we were able to perform multiple simulations with different vehicle shapes. These simulations are revealing how the geometric parameters of the vehicle’s frontal profile are influencing the head acceleration. This paper highlights the main geometric parameters of the frontal profile design that influence the head injury severity and the way that the vehicles can be improved by modifying these parameters. The paper presents an approach to determine the “friendliness” of the vehicle’s frontal profile in the car-to-pedestrian collision.  相似文献   

3.
Automotive Technical Information Research Institute is an information unit mainly engaged in soft-science research oriented in the auto industry development strategy, policy, market, auto industrial and economic trade policies, auto industry information administration, service and consultation. It also assists the government departments concerned in  相似文献   

4.
Q: The 9th Five-Year Plan period starts. People believe China auto industry will go a rapid development during the 9th Five-Year Plan period. Could you give us some information about the possibility of reaching the planned 3  相似文献   

5.
6.
The paper presents an extension of the ‘Triangle Method’, to evaluate the energy loss in road accidents. The improvement of the method allows to evaluate the energy loss by both the colliding vehicles in car to car impacts, considering the main possible configurations of accident. The limits of applicability of the method are those of the Campbell's method [K.E. Campbell, Energy basis for collision severity, SAE paper 740565, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1974; A.G. Fonda, Principles of crush energy determination, SAE 1999-01-0106, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1999; N.S. Tumbas and R.A. Smith, Measurement protocol for quantifying vehicle damage from an energy basis point of view, SAE paper 880072, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1988; G.A. Nystrom, G. Kost, and S.M. Werner, Stiffness parameters for vehicle collision analysis, SAE paper 910119, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1991; J.A. Neptune, G.Y. Blair, and J.E. Flynn, A method for quantifying vehicle crush stiffness coefficients, SAE paper 920607, Society of Automotive Engineers, Inc., Warrendale, Pennsylvania, 1992]. The advantage over the usual methods are that the method does not require the knowledge of the stiffness of the vehicles and only two parameters are needed to define the damage geometry. The latter can be easily evaluated by visual inspection on a suitable photographical documentation of the damages, without the need to perform any direct measurement on the vehicles. Furthermore, the method can be used also in the very frequent cases in which some of the damage data about one of the vehicles are missing or in accidents involving lateral parts of the vehicle as zones near the wheels or the front, that have different behaviour from that tested in the classical crash tests. The error analysis developed shows that the errors due to the application of the extended method are negligible and fall in the range generally considered acceptable in road accident reconstruction.  相似文献   

7.
A classification of wheel flats according to the different stages of their growth is given, along with the characteristic features of the dynamic wheel–rail interaction for each category. Mathematical expressions and frequency spectra of the corresponding wheel mass trajectories are derived. Difference is made between the subcritical and the transcritical speed regime. A criterion is derived for contact loss for worn flats. Simulations show that the dynamic wheel–rail interaction is governed by the track stiffness for low train speeds or long flat lengths; for high speeds and/or short flat lengths the interaction is governed by the inertial properties of the wheel and the rail. For a given flat geometry, nonlinearities in the relationship between the impact magnitude and the train speed occur in the stiffness-dominated speed domain, whereas this relationship is approximately linear in the inertia-governed domain. In the latter domain, the impact magnitude is found to be linearly dependent upon the maximum trajectorial curvature or inversely linearly dependent on the minimum circumferential wheel tread curvature. The above relationships are valid for the subcritical speed regime, in which no contact loss occurs. Different contributions from the literature are compared with respect to the established relationship between impact magnitude and speed. Significant differences are found, due to insufficiently defined parameters and conditions. Conditions are derived for a consistent application of the so-called equivalent rail indentation in experiments with wheel flats, and the indirect strain registration method for measuring dynamic wheel–rail contact forces is reviewed.  相似文献   

8.
9.
10.
11.
A comprehensive dynamic finite-element simulation method was proposed to study the wheel–rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel–rail materials and thermal stress due to the wheel–rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel–rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel–rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号