首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以南宁轨道交通2号线某区间盾构双线隧道先后通过与隧道间距不同的管线为工程背景,通过FLAC软件数值计算和现场监测相结合的方法研究了富水圆砾地层地铁盾构隧道施工对既有临近管线变形的影响规律。结果表明:随着地层深度增加,沉降槽宽度减小;管线最大沉降量出现在左线隧道中线上方;盾构刀盘通过2倍盾构外径范围后,管线沉降逐渐趋于稳定;管线沉降曲线受右线隧道开挖影响不再符合高斯曲线,同时管线最大拉应力呈增加趋势,而最大压应力呈减小趋势。研究结果可为类似工况下地铁盾构隧道的安全施工提供参考。  相似文献   

2.
以某地铁线路隧道重叠交叉段联络通道施工为工程背景,针对下部隧道联络通道冻结法施工,建立Midas/GTS建立三维有限元模型,分析联络通道冻结法施工过程对上部隧道的影响。分析结果表明:下部隧道联络通道施工完成后,上部隧道最大沉降量为-0.322 mm,最大隆起量为0.211 mm,最大水平位移为-0.053 mm,均在安全可控范围内;上部隧道结构最大拉压应力也均满足强度要求。  相似文献   

3.
深圳地铁隧道邻接施工沉降数值模拟研究   总被引:1,自引:1,他引:0  
研究目的:针对深圳地铁新建隧道邻接既有隧道工程,利用FLAC3D软件进行施工过程模拟,探讨新建地铁区间隧道施工过程中新建隧道周边地层位移、既有隧道施工沉降、地面沉降、新建与既有隧道的安全等问题.研究结论:在本地质条件和特定盾构推力情况下,地面最大沉降12.9 mm,最大隆起值0.7 mm,变形量满足设计要求;既有隧道施工结束并完成相应固结沉降最终沉降值为1.8 mm,地表沉降槽宽度约60 m,沉降曲线相对平坦,满足既有隧道横向差异沉降要求.  相似文献   

4.
暗挖地铁车站下穿既有地铁隧道施工控制   总被引:6,自引:0,他引:6  
以北京地铁5号线崇文门暗挖车站下穿既有地铁隧道施工为背景,探讨采用柱洞法结合超前管幕施工的控制技术.施工前对既有地铁轨道和隧道结构进行加固.根据现状评估数据制订既有地铁隧道结构沉降控制标准,并制定各施工步序的沉降控制值.监测结果表明:既有地铁隧道结构变形缝处沉降量最大,是施工控制的重点部位;超前管幕起到了防塌作用,但其自身施工引起既有地铁隧道结构沉降9.52mm,选用时应慎重;侧洞管幕施工完成时,变形缝处隧道结构累计沉降量超限,且道床与隧道间发生严重脱离.采用抬升注浆和充填注浆分别对既有地铁隧道结构累计沉降量超限及道床与隧道间脱离进行处理,最终将既有地铁隧道结构沉降量控制在16.75 mm以内,道床与隧道间脱离区域被有效填充,确保了施工期间既有地铁线路的安全运营.  相似文献   

5.
研究目的:岩溶地区侧方基坑桩基施工及土方开挖过程中,浅埋明挖箱型地铁隧道结构出现突发沉降,尤其是变形缝部位沉降显著,本文通过箱型地铁隧道沿线及变形缝两侧的位移监测数据,分析隧道结构突发沉降产生的原因,并研究了浅层回灌水、深层回灌水和注浆加固等沉降控制措施的效果。研究结论:(1)支护桩施工诱发浅埋箱型隧道最大累计沉降为3. 3 mm,应重视其在岩溶地区的施工影响;(2)嵌岩工程桩施工揭露溶洞,承压岩溶水突涌桩孔,是侧方浅埋箱型地铁隧道结构突发沉降的主要原因;(3)浅层回灌水可短时间内使地层补水,抬升隧道,抑制隧道急剧沉降;长期实施深层回灌、桩基泥浆护壁施工,可维持地下水位,控制侧方隧道沉降,但存在深层回灌水可能通过岩溶裂隙或通道进入溶洞,降低回灌水补充效率的问题;(4)"双排桩+对拉钢绞线+对称开挖"有效控制隧道的最大水平位移为3. 0 mm;(5)箱型地铁隧道周围进行垂直和斜向钻孔注浆可起到加固和止水的效果,考虑到变形缝的敏感性,应实时控制注浆压力;(6)该研究成果可供类似岩溶地区浅埋箱型地铁隧道侧方基坑工程参考。  相似文献   

6.
大型基坑开挖引起的卸载作用将导致基坑周边土层和建(构)筑物发生隆起变形,威胁周边建筑物的运营安全.针对京张高铁清华园隧道盾构工作井大型基坑临近地铁13号线面临的变形控制问题,从设计和施工2个方面提出管控技术要求.(1)工作井围护结构采用地下连续墙+混凝土支撑,将地表沉降和水平变形控制在0.15%基坑高度以内且小于30m...  相似文献   

7.
软土地区逆作法地铁换乘车站基坑变形特性研究   总被引:3,自引:1,他引:2  
研究目的:地铁嘉善路车站为上海市轨道交通9号线二期工程与12号线工程的换乘站,为地下三层岛式车站。场地浅层以淤泥质粉质黏土和淤泥质黏土为主。本文通过监测数据,分析了该换乘站逆作法施工过程中的连续墙侧向位移特性、墙顶沉降特性、立柱隆起特性以及周围地面沉降特性,探讨了其发展的规律,与已有研究成果进行了对比,得到一些有价值的结论。研究结论:研究结果表明,软土地区地铁车站逆作法施工变形特性如下:(1)连续墙侧向位移特性呈中间大、两侧小的趋势,最大水平位移始终出现在距离开挖面上几米的位置。最大位移量和开挖深度的比值约为0.18%。(2)连续墙墙顶竖向变形均以沉降变形为主,且绝大部分沉降变形发生第二层土开挖结束以前,在这个阶段以后,墙顶竖向变形呈波动状态。(3)在基坑开挖过程中,基坑内土体以及立柱桩基均呈隆起趋势,在开挖初期隆起量较大。(4)土方开挖造成的地表沉降约为开挖深度H的0.13%。研究成果对于同类工程的设计、施工具有借鉴价值。  相似文献   

8.
新建车站零距离穿越既有地铁车站结构,势必会对其运营安全及结构变形产生不可忽视的影响。以南京某工程为实例,明挖基坑开挖通过与既有车站结构间增设一排隔离桩、对称开挖,暗挖施工采用上下台阶法进行开挖、左右导洞对称施工。根据有限元数值分析基坑开挖引起的临近地表沉降和既有车站结构的变形,沉降最大值为9.8 mm,既有结构新增最大沉降量2.9 mm,累计沉降量8.3 mm,可确保既有结构的安全。  相似文献   

9.
为确保土压平衡盾构机下穿施工既有地铁运营隧道的安全,利用三维数值有限元软件精细化建模,考虑注浆压力和掌子面压力变化的影响,多工况模拟土压平衡隧道施工获得运营隧道变形规律。通过分析土压平衡盾构机下穿施工过程中的位移响应,判定上部交叉运营地铁隧道所受影响并给出合理的注浆压力和掌子面压力参数。工程实际中利用莱卡TS30监测机器人建立了自动监测系统,对运营隧道的位移进行了监测。根据计算与监测结果得到:(1)掌子面压力越大,既有隧道沉降越小,运营隧道左线仰拱沉降最大,仰拱最大沉降范围为3.4~3.7 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1.9~2.1 mm之间。(2)注浆压力越大,既有隧道沉降越小,左线拱顶最大沉降范围在2. 6~3. 6 mm;新建隧道左线线路中线所对应的地表最大沉降范围在1~2. 1 mm。(3)盾构隧道在下穿运营地铁1号线过程中,邻近运营隧道拱顶最大沉降范围在2~3.5 mm,远小于10 mm,可确保运营隧道安全。(4)采用选取的注浆压力0. 3~0. 36 MPa与土仓压力0. 1~0. 13 MPa下施工,盾构隧道穿过运营隧道后,运营隧道中股道沉降最大值为0.5 mm,轨道沉降值小于10 mm,符合要求,运营隧道安全。最后,提出了相应施工对策:在盾构下穿既有隧道施工时,应减少超挖、适当选取盾构施工参数、盾构快速通过近接区和实时监测反馈施工。  相似文献   

10.
以昆明地铁3号线西山公园站深基坑工程骑跨既有公路隧道为工程背景,利用Midas-GTS建立二维数值模拟深基坑全过程,研究基坑开挖对下方既有隧道的变形影响规律。分析坑内加固和基坑时空效应施工措施对控制隧道上抬变形的影响,结合现场实际监测数据和有限元分析表明:(1)基坑开挖对下部岩体具有显著的垂直方向卸荷作用,其受力状态和形状的改变程度受限于上部土体性质、土体开挖量、开挖方式及隧道围岩性质;(2)坑内加固后可明显降低隧道衬砌的隆起变形,降幅约为18%;(3)实际监测数据略小于计算结果,但变形趋势二者较为吻合。  相似文献   

11.
研究目的:地铁施工造成的周边地表沉降影响因素众多,经典理论难以精确计算,施工监测已成为重要工程决策的重要依据之一。因此,有必要基于现场施工监测数据,来研究复杂施工体系所造成地表沉降的空间规律及其统计特征,以期为类似工程提供理论依据与实践基础。研究结论:(1)地铁车站施工期间,基坑周边附属设施施工(如搅拌桩)可能引起基坑周边土体显著隆起,隆起值可达到[10 mm,25 mm];(2)地铁车站主体开挖期间,周边土体会产生显著沉降,在垂直于基坑边缘方向,各组测点沉降的最大值,发生在距离基坑边缘0.3~0.9倍开挖深度的区域,与文献全局最大值的结果整体吻合,呈现一定的区域性与离散性;(3)从观测数据统计特征的角度,可以认为沉降最大值发生位置分布在[0.5,0.73]开挖深度的区间,其均值约为0.65,中位数约为0.64,均方差约为0.11;在此区域应重点监控,加强防护;(4)车站基坑平面形状较为复杂区域的地表沉降最大值,有可能偏离已有研究与监测数据的统计区间,建议工程中对局部施工方案进行针对性优化;(5)本研究成果可为我国城市地铁建设的相关设计与施工提供参考依据。  相似文献   

12.
研究目的:为研究湿陷性黄土地区隧道施工对临近既有隧道的影响,本文通过开展室内土工离心模型试验,采用控制新建盾构隧道拱顶下沉量的方法模拟隧道施工造成的地层损失量,并考虑新建隧道与既有隧道之间的间距,设置多组工况研究既有地铁隧道仰拱最大竖向位移以及围岩压力变化规律。研究结论:(1)既有隧道仰拱最大竖向位移随着地层损失率的增大及隧道净距的减小均呈线性增加规律,据此提出单线盾构穿越过程中新建隧道拱顶沉降控制标准:净距0. 5D、0. 4D、0. 3D、0. 2D工况分别为25 mm、19 mm、14. 5 mm、12. 6 mm;(2)既有隧道仰拱处比拱腰及拱顶处围岩压力减小明显,新建盾构隧道上部围岩压力有变大的趋势,新建隧道上部一定高度范围内的土层形成了拱效应;(3)研究结果与既有地铁结构仰拱实测数据进行分析对比以及优化拟合公式可为湿陷性黄土地区类似工程提供预测曲线。  相似文献   

13.
林峰 《铁道建筑》2023,(1):100-104
依据杭州文一西路提升改造工程监测数据,采用有限元软件ABAQUS建立深基坑近接既有地铁隧道三维数值模型,分析了深基坑施工时地表沉降、支撑轴力以及地铁隧道沉降的变化规律;通过改变加固区宽度、强度和近接水平间距,分析各因素对地铁隧道水平位移的影响。结果表明:地表沉降曲线呈凹槽形,随着施工的进行,钢支撑轴力和拱顶沉降基本呈线性增长,拱底总体上先抬升再沉降。地铁隧道水平位移与加固区宽度、强度和水平间距呈负相关,但水平间距在4~7 m时位移变化幅度较小;地铁隧道拱腰最大水平位移对各影响因素的敏感性排序为加固区宽度>加固区强度>水平间距,地铁隧道水平位移对加固区宽度和强度更敏感。  相似文献   

14.
研究目的:在盾构施工过程中,盾构机与岩土体相互作用间具有强烈的耦合关系,如何通过仿真技术分析各因素对盾构施工过程中隧道受力和地表沉降的影响,是保障隧道施工安全的必要条件。本文以大连地铁202标段为例,对盾构开挖进行模拟,并结合工程实际地质情况和现场监测数据,进行三维仿真分析,研究其施工过程的影响因子及效应。研究结论:分析结果表明:(1)随着土舱压力的增大,地表沉降呈减小趋势,掌子面上的应力呈增大趋势,且塑性区范围增大;(2)注浆量增大,地表沉降减小,当注浆量过大时,破坏土体的自稳性,地表沉降变大;(3)盾构机在穿越不同土层时,地表变化是不同的,可根据模拟结果调整参数;(4)本研究成果可用于复杂环境下地铁盾构隧道的监测。  相似文献   

15.
研究目的:在双线隧道盾构掘进过程中,先开挖隧道地层变形会对后开挖隧道地层变形产生不可忽视的影响,导致双线隧道盾构掘进完成后地表沉降存在差异性。依托天津地铁某盾构区间隧道掘进工程,基于FLAC3D软件建立隧道掘进过程的有限元模型,从隧道开挖变形、地表沉降的角度分析先挖线路对后挖线路变形特征的影响,验证双线隧道盾构施工导致地表沉降的叠加效应。为保证盾构掘进过程中地表沉降不超标,通过数值模拟分析盾构土仓压力、同步注浆量和出渣量等因素对地表最大沉降量的影响,有效指导盾构隧道施工参数的选择,最后通过现场监测数据验证数值模拟结果的正确性。研究结论:(1)前序次开挖隧道对后序次开挖隧道的隧道拱顶沉降与地表沉降均存在叠加效应影响,后序次开挖隧道的拱顶沉降及地表沉降均略大于前序次隧道的对应沉降值;(2)数值模拟结果与现场实测结果的对比显示,实测地表沉降值相比数值模拟计算值分别高出5. 78 mm、4. 97 mm,隧道的管片沉降实测值与计算值误差均在5%以内,数值模拟计算误差均处于可控范围内,一定程度上验证了数值模拟结果的正确性;(3)本研究结论在城市地铁盾构(TBM)法施工领域,对地表沉降控制方面的机理研究和实践操作有较好的应用效果。  相似文献   

16.
黄土地区地铁盾构下穿铁路变形控制技术   总被引:1,自引:0,他引:1  
研究目的:黄土地区某城市地铁2号线盾构施工下穿既有陇海铁路线是一个盾构施工中的I级风险源,为保证地铁盾构施工安全下穿陇海线路,开展了盾构施工穿越既有铁路的变形控制技术研究,以为盾构安全施工提供技术支撑。研究结论:(1)黄土地区地铁盾构下穿既有陇海线路的地表沉降规律:不采取控制措施盾构施工时,路基右线隧道轴线正上方的沉降量为20.48 mm,左线隧道轴线正上方的沉降量为12.85 mm,左右线隧道的轴线上的沉降量均超出了沉降允许值;采取严格控制土压力、盾构匀速通过、严格控制注浆量、减少盾构推进方向的改变等减小地铁盾构下穿既有铁路施工风险的措施盾构施工时,右线隧道轴线正上方的沉降量为5.44 mm,左线隧道轴线上方的沉降量为4.95 mm,均小于变形允许值。(2)FLAC计算预测的变形规律与实际值基本一致,地表和铁路路基的变形量在允许范围内;减小地铁盾构下穿既有铁路施工风险的措施合理有效。(3)该研究成果可应用于黄土地区地铁盾构下穿铁路施工变形控制。  相似文献   

17.
研究目的:与既有地铁隧道上下重叠建设的基坑工程日益增多,基坑开挖卸荷对下方既有地铁隧道的影响是该类工程中不可忽视的问题。本文结合工程实例,采用有限元软件进行数值模拟,分析基坑开挖深度、土层特性等方面对下卧隧道的影响,并总结基坑开挖卸荷对下方隧道在结构变形、内力等方面的发展态势和变化规律。研究结论:(1)当基坑开挖深度与下卧隧道覆土厚度之比大于0.5时,下卧隧道结构变形和内力增幅显著,下方隧道竖向位移与上方基坑开挖深度近似于呈线性变化;(2)土层弹性模量越小,隧道隆起量变化增幅越大;(3)隧道内力随着基坑开挖深度的增加呈现减小趋势,当基坑深度开挖至7 m后,由于隧道偏压作用逐渐显著,隧道结构内力呈现增长趋势;(4)本研究结果可为类似工程设计、风险评估与施工提供借鉴和参考。  相似文献   

18.
魏英华 《铁道建筑》2020,(2):75-78,115
以北京地铁16号线下穿4号线为工程背景,通过数值计算及现场监测研究城市地铁隧道中新旧地铁间的穿越施工的相互影响,并对既有地铁变形进行了安全评估。研究结果表明:既有隧道沉降计算值与实测值吻合较好且变化规律一致;隧道穿越施工导致的既有隧道沉降最大值发生在新建隧道的正上方,既有隧道最终累计沉降曲线呈W形;既有区间隧道结构内力变化较小,满足结构承载能力要求;既有区间隧道上下行结构最大累计水平位移变化量分别为0.35,0.39 mm,水平位移均未达到预警值。根据隧道变形的安全性评价提出了相应的施工防控措施,为类似双线盾构隧道下穿既有隧道的变形影响提供借鉴。  相似文献   

19.
以哈尔滨地铁大断面隧道为背景,对双侧壁导坑法施工诱发的地面沉陷及隧道本身的变形规律进行研究。利用MIDAS/GTS建立空间有限元模型,采用数值模拟和实际监测数据相结合的方法,对地表沉降、拱顶下沉进行分析。研究结果表明:地表沉降曲线呈"漏斗"状,且沿开挖导洞中线呈对称分布,影响范围约为2. 5D(D为隧道洞径);左上导洞(1号导洞)、右上导洞(2号导洞)、中上导洞(5号导洞)开挖是引起地表下沉的主要原因;拱顶沉降主要发生在距开挖面15 m(1倍隧道洞径)范围内,最大下沉值为-17. 79 mm,占拱顶总沉降量的66%;采用超前加固的方式控制拱顶下沉效果显著,数值仿真结果与实际监控量测数据吻合较好。MIDAS/GTS有限元数值仿真软件可以有效地预判地层变形。  相似文献   

20.
研究目的:近距离交叉隧道修建带来的挑战日益增多,本文依托重庆北站10号线与环线交叉换乘车站工程,运用数值计算、理论分析、现场监测数据等手段,对应力、变形及实测数据进行对比分析,从而确定合理的施工方案,为类似地铁工程建设提供参考。研究结论:(1)在3个备选方案中选择了方案一:10号线先开挖,且10号线二次衬砌先施作;(2)对方案一的交叉段进行数值模拟,最大沉降及最大隆起分别为8.2 mm和4.04 mm,都没有超过安全值;(3)实测数据表明,地表建筑物沉降最大值为1.30 mm,净空收敛最大值为12.53 mm(爆破扰动),拱顶最大沉降为7.76 mm,可见采用方案一开挖交叉段可以很好地控制隧道围岩的稳定性,进一步验证了选择方案一的合理性;(4)该成果可供重庆地铁车站等类似地铁车站的施工参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号